zbMATH — the first resource for mathematics

Demailly-Semple jets in dimension 3. (Étude des jets de Demailly-Semple en dimension 3.) (French) Zbl 1092.58003
The author presents an algebraic characterization of Demailly-Semple jets in dimension \(3\) by using the invariant theory of non reductive groups. In dimension \(3\), the algebra of differential operators is generated by the first order jets \(f^\prime_i\), the expressions \(w_{ij}=f^\prime_if^{\prime \prime}_j-f^\prime_jf^{\prime \prime}_i\) involving jets of first and second order, some expressions \(w^k_{ij}\) involving jets of first, second and third order and a determinant \(W\) defined by the jets of first, second and third order of the components \(f_1,f_2,f_3\). The degree is \(7\). The main geometric applications consist in the characterization of the graded bundle of jets of order \(3\) on a three-dimensional complex manifold and in the computation of the Euler-Poincaré characteristic of a smooth hypersurface of degree \(d\) in \(\mathbb{P}^4\).

58A20 Jets in global analysis
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
13A50 Actions of groups on commutative rings; invariant theory
06B05 Structure theory of lattices
Full Text: DOI Numdam EuDML arXiv
[1] Demailly, J.-P., Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Sympos. Pure Math., 62, 285-360, (1997), Amer. Math.Soc., Providence, RI · Zbl 0919.32014
[2] Demailly, J.-P.; El Goul, J., Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math, 122, 515-546, (2000) · Zbl 0966.32014
[3] Dethloff, G.; Lu, S., Logarithmic jet bundles and applications, Osaka J. of Math., 38, 185-237, (2001) · Zbl 0982.32022
[4] Dethloff, G.; Schumacher, G.; Wong, P. M., Hyperbolicity of the complement of plane algebraic curves, Amer.J. Math, 117, 573-599, (1995) · Zbl 0842.32021
[5] Dethloff, G.; Schumacher, G.; Wong, P. M., On the hyperbolicity of the complements of curves in algebraic surfaces : the three component case, Duke. Math. J., 78, 193-212, (1995) · Zbl 0847.32028
[6] Fulton, W., Young Tableaux, (1997), London Mathematical Society Student Texts 35, Cambrige University Press · Zbl 0878.14034
[7] Green, M.; Griffiths, P., Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979, 41-74, (1980), Proc. Inter. Sympos. Berkeley, CA, Springer-Verlag, New-York · Zbl 0508.32010
[8] Iitaka, S., On the logarithmic Kodaira dimension of algebraic varieties, Complex Anal. and Alg. Geom., 175-189, (1977), Ianami Shoten · Zbl 0351.14016
[9] Iitaka, S., Geometry on complements of lines in \(\mathbb{P}^2,\) Tokyo J. Math., 1, 1-19, (1978) · Zbl 0391.14004
[10] Kobayashi, S.; Ochiai, T., On complex manifolds with positive tangent bundles, Journal of the Mathematical Society of Japan, 22, 499-525, (1970) · Zbl 0197.36003
[11] Pommerening, K., Invariant theory, LNM, 1278, (1987)
[12] Popov, V. L., Invariant theory, 4, (1989), EMS, Springer-Verlag · Zbl 0789.14008
[13] Procesi, C., Classical invariant theory, Brandeis Lect. Notes, 1, (1982)
[14] Rousseau, E., Sur la conjecture de Kobayashi et l’hyperbolicité des hypersurfaces projectives en dimension 2 et 3
[15] Rousseau, E., Hyperbolicité du complémentaire d’une courbe : le cas de deux composantes, CRAS, Ser. I 336, 635-640, (2003) · Zbl 1034.32017
[16] Sakai, F., Symmetric powers of the cotangent bundle and classification of algebraic varieties, Lect. Notes in Math., 732, (1979), Berlin, Heidelberg, New York, Springer · Zbl 0415.14020
[17] Siu, Y.-T.; Yeung, S. K., Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane, Invent. Math., 124, 573-618, (1996) · Zbl 0856.32017
[18] Tan, L., On the Popov-pommerening conjecture for groups of type \({A}_n,\) Proc. AMS, 106, 611-616, (1989) · Zbl 0682.14005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.