## Minimax expected measure confidence sets for restricted location parameters.(English)Zbl 1092.62040

Summary: We study confidence sets for a parameter $$\theta\in\Theta$$ that have minimax expected measure among random sets with at least $$1-\alpha$$ coverage probability. We characterize the minimax sets using duality, which helps to find confidence sets with small expected measure and to bound improvements in expected measure compared with standard confidence sets. We construct explicit minimax expected length confidence sets for a variety of one-dimensional statistical models, including the bounded normal mean with known and with unknown variance. For the bounded normal mean with unit variance, the minimax expected measure 95% confidence interval has a simple form for $$\Theta= [-\tau,\tau]$$ with $$\tau\leq3.25$$. For $$\Theta=[-3,3]$$, the maximum expected length of the minimax interval is about 14% less than that of the minimax fixed-length affine confidence interval and about 16% less than that of the truncated conventional interval $$[X -1.96, X+1.96]\cap [-3,3]$$.

### MSC:

 62F25 Parametric tolerance and confidence regions 62C20 Minimax procedures in statistical decision theory 60A10 Probabilistic measure theory

### Keywords:

Bayes-minimax duality; constrained parameters
Full Text:

### References:

 [1] Bickel, P.J. (1981) Minimax estimation of the mean of a normal distribution when the parameter space is restricted. Ann. Statist., 9, 1301-1309. · Zbl 0484.62013 · doi:10.1214/aos/1176345646 [2] Brown, L.D. (1966) On the admissibility of invariant estimators of one or more location parameters. Ann. Math. Statist., 37, 1087-1136. · Zbl 0156.39401 · doi:10.1214/aoms/1177699259 [3] Casella, G. (2002) Comment on ’Setting confidence intervals for bounded parameters\' by M. Mandelkern. Statist. Sci., 17(2), 159-160. · Zbl 1013.62028 · doi:10.1214/ss/1030550859 [4] Casella G. and Hwang, J.T. (1983) Empirical Bayes confidence sets for the mean of a multivariate normal distribution. J. Amer. Statist. Assoc., 78, 688-698. JSTOR: · Zbl 0562.62031 · doi:10.2307/2288139 [5] Casella G. and Strawderman, W.E. (1981) Estimating a bounded normal mean. Ann. Statist., 9, 870- 878. · Zbl 0474.62010 · doi:10.1214/aos/1176345527 [6] Casella, G. Hwang, J.T.G. and Robert, C. (1993) A paradox in decision-theoretic interval estimation. Statist. Sinica, 3, 141-155. · Zbl 0823.62003 [7] Donoho, D.L. (1994) Statistical estimation and optimal recovery. Ann. Statist., 22, 238-270. · Zbl 0805.62014 · doi:10.1214/aos/1176325367 [8] Donoho, D.L. and Liu, R.C. (1991) Geometrizing rates of convergence. III. Ann. Statist., 19, 668-701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115 [9] Fan, K. (1953) Minimax theorems. Proc. Natl. Acad. Sci. USA, 39, 42-47. · Zbl 0050.06501 · doi:10.1073/pnas.39.1.42 [10] Ghosh, J.K. (1961) On the relation among shortest confidence intervals of different types. Calcutta Statist. Assoc. Bull., 10, 147-152. · Zbl 0147.18204 [11] Gleser, L.J. (2002) Comment on ’Setting confidence intervals for bounded parameters\' by M. Mandelkern. Statist. Sci., 17(2), 160-163. · Zbl 1013.62028 · doi:10.1214/ss/1030550859 [12] Hansen, H.B. (2001) Minimax expected length confidence intervals. Masterś thesis, University of California, Berkeley. [13] Hooper, P.M. (1982) Invariant confidence sets with smallest expected measure. Ann. Statist., 10, 1283- 1294. · Zbl 0536.62024 · doi:10.1214/aos/1176345994 [14] Hooper, P.M. (1984) Correction. Ann. Statist., 12, 784. [15] Hwang J.T. and Casella, G. (1982) Minimax confidence sets for the mean of a multivariate normal distribution. Ann. Statist., 10, 868-881. · Zbl 0508.62031 · doi:10.1214/aos/1176345877 [16] Ibragimov, I.A. and Khasḿinskii, R.Z. (1985) On nonparametric estimation of the value of a linear functional in Gaussian white noise. Theory Probab. Appl., 29, 18-32. · Zbl 0575.62076 · doi:10.1137/1129002 [17] Joshi, V.M. (1967) Inadmissibility of the usual confidence sets for the mean of a multivariate normal population. Ann. Math. Statist., 38, 1868-1875. · Zbl 0155.26104 · doi:10.1214/aoms/1177698619 [18] Joshi, V.M. (1969) Admissibility of the usual confidence sets for the mean of a univariate or bivariate normal population. Ann. Math. Statist., 40, 1042-1067. · Zbl 0205.46202 · doi:10.1214/aoms/1177697608 [19] Kamberova, G. and Mintz, M. (1999) Minimax rules under zero-one loss for a restricted parameter. J. Statist. Plann. Inference, 79, 205-221. · Zbl 1052.62503 · doi:10.1016/S0378-3758(98)00237-7 [20] Kamberova, G., Mandelbaum, R. and Mintz, M. (1996) Statistical decision theory for mobile robotics: theory and application. In IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI \'96. New York: Institute of Electrical and Electronics Engineers. [21] Karlin, S. (1968) Total Positivity, Volume 1. Stanford, CA: Stanford University Press. · Zbl 0219.47030 [22] Kneser, H. (1952) Sur un théorème fondamental de la théorie des jeux. C. R. Acad. Sci. Paris, 234, 2418-2420. · Zbl 0046.12201 [23] Lehmann, E.L. (1986) Testing Statistical Hypotheses (2nd edn). New York: Wiley. · Zbl 0608.62020 [24] Lehmann, E.L. and Casella, G. (1998) Theory of Point Estimation. New York: Springer-Verlag. 2nd edition. · Zbl 0916.62017 [25] Mandelkern, M. (2002a) Setting confidence intervals for bounded parameters. Statist. Sci., 17(2), 149- 159. · Zbl 1013.62028 · doi:10.1214/ss/1030550859 [26] Mandelkern, M. (2002b) Setting confidence intervals for bounded parameters, rejoinder. Statist. Sci., 17(2), 171-172. · Zbl 1013.62028 · doi:10.1214/ss/1030550859 [27] Pratt, J.W. (1961) Length of confidence intervals. J. Amer. Statist. Assoc., 56, 549-567. JSTOR: · Zbl 0099.14002 · doi:10.2307/2282079 [28] Pratt, J.W. (1963) Shorter confidence intervals for the mean of a normal distribution with known variance. Ann. Math. Statist., 34, 574-586. · Zbl 0114.35502 · doi:10.1214/aoms/1177704170 [29] Schafer, C.M. (2004) Constructing confidence regions of optimal expected size: theory and application to cosmic microwave inference. PhD thesis, University of California, Berkeley. [30] Schafer, C.M. and Stark, P.B. (2004) Using what we know: inference with physical constraints. In L. Lyons, R. Mount and R. Reitmeyer (eds), Proceedings of the Conference on Statistical Problems in Particle Physics, Astrophysics and Cosmology PHYSTAT2003, pp. 25-34, Menlo Park, CA, 2004. Standford Linear Accelerator Center. [31] Sion, M. (1958) On general minimax theorems. Pacific J. Math., 8, 171-176. · Zbl 0081.11502 · doi:10.2140/pjm.1958.8.171 [32] Stark, P.B. (1992) Affine minimax confidence intervals for a bounded normal mean. Statist. Probab. Lett., 13, 39-44. [33] van Dyk, D.A. (2002) Comment on ’Setting confidence intervals for bounded parameters\' by M. Mandelkern. Statist. Sci., 17(2), 164-168. · Zbl 1013.62028 · doi:10.1214/ss/1030550859 [34] Wasserman, L. (2002) Comment on ’Setting confidence intervals for bounded parameters\' by M. Mandelkern. Statist. Sci., 17(2), 163. [35] Woodroofe, M. and Zhang, T. (2002) Comment on ’Setting confidence intervals for bounded parameters\' by M. Mandelkern. Statist. Sci., 17(2), 168-171. [36] Zeytinoglu, M. and Mintz, M. (1984) Optimal fixed size confidence procedures for a restricted parameter space. Ann. Statist., 12, 945-957. · Zbl 0562.62032 · doi:10.1214/aos/1176346713 [37] Zeytinoglu, M. and Mintz, M. (1988) Robust fixed size confidence procedures for a restricted parameter space. Ann. Statist., 16, 1241-1253. · Zbl 0651.62024 · doi:10.1214/aos/1176350958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.