Battaglia, Francesco; Orfei, Lia Outlier detection and estimation in nonlinear time series. (English) Zbl 1092.62081 J. Time Ser. Anal. 26, No. 1, 107-121 (2005). The paper deals with the problem of identifying the time location and estimating the amplitude of outliers in nonlinear time series. A model based method is proposed for detecting the presence of additive or innovation outliers when the stationary zero-mean time series is generated by a nonlinear model of the type \(x_t=f(x^{(t-1)}; \varepsilon^{(t-1)})+ \varepsilon_t\), where \(f\) is a nonlinear function containing the unknown parameters, \(x^{(t-1)}= (x_{t-1}, x_{t-2},\dots, x_{t-p})'\), \(\varepsilon^{(t-1)}= (\varepsilon_{t-1}, \varepsilon_{t-2},\dots, \varepsilon_{t-p})'\), where \(\varepsilon_t\) is a zero-mean Gaussian white-noise series with \(E(\varepsilon^2_t)=\sigma^2\). The authors use this method for identifying and estimating outliers in bilinear, self exciting threshold autoregressive (SETAR) and exponential autoregressive models. A simulation study is performed to test the proposed procedures and comparing them with methods based on linear models and linear interpolators. This approach is applied to detecting outliers in the Canadian lynx trapping and in sunspot numbers data. Reviewer: N. M. Zinchenko (Kyïv) Cited in 6 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 65C05 Monte Carlo methods Keywords:bilinear models; exponential autoregressive models; outliers; self-exciting threshold autoregressive models; state-dependent models; sunspot numbers PDF BibTeX XML Cite \textit{F. Battaglia} and \textit{L. Orfei}, J. Time Ser. Anal. 26, No. 1, 107--121 (2005; Zbl 1092.62081) Full Text: DOI References: [1] Abraham B., Biometrika 66 pp 229– (1979) [2] DOI: 10.1016/0304-4076(95)01744-5 · Zbl 0864.62057 [3] Beveridge S., Communications in Statistics - Theory and Methods 21 pp 3479– (1992) [4] Box G. E. P., Journal of the American Statistical Association 70 pp 70– (1975) [5] Chan W. S., Test 4 pp 179– (1995) [6] Chan W. S., Journal of Forecasting 13 pp 37– (1994) [7] Chang I., Technometrics 30 pp 193– (1988) [8] DOI: 10.1016/S0167-9473(96)00068-0 · Zbl 0900.62468 [9] Chen C., Journal of Forecasting 12 pp 13– (1993) [10] Chen C., Journal of the American Statistical Association 88 pp 284– (1993) [11] Deutsch S. J., Communications in Statistics - Theory and Methods 19 pp 2207– (1990) [12] DOI: 10.1002/(SICI)1099-1255(199909/10)14:5<539::AID-JAE526>3.3.CO;2-N [13] Fox A. J., Journal of the Royal Statistical Society Series 34 pp 350– (1972) [14] Gabr M. M., Communications in Statistics - Theory and Methods 27 pp 41– (1998) [15] Gabr M. M., Journal of Time Series Analysis 2 pp 155– (1981) [16] Haggan V., Biometrika 68 pp 189– (1981) [17] DOI: 10.1016/0169-2070(89)90090-3 [18] Liu L., Forecasting and Time Series Analysis using the SCA Statistical System (1992) [19] Ljung G. M., Communications in Statistics - Simulation Computation 18 pp 459– (1989) [20] Ljung G. M., Journal of the Royal Statistical Society Series B 55 pp 559– (1993) [21] McCulloch R. E., Journal of Time Series Analysis 15 pp 235– (1994) [22] Pena D., Journal of Business and Economic Statistics 8 pp 235– (1990) [23] Pena D., Communications in Statistics - Theory and Methods 20 pp 3175– (1991) [24] Priestley M. B., Spectral Analysis and Time Series (1981) · Zbl 0537.62075 [25] Priestley M. B., Non-linear and Non-stationary Time Series Analysis (1988) · Zbl 0687.62072 [26] Smith A. F. M., Biometrics 39 pp 867– (1983) [27] Tong H., Journal of the Royal Statistical Society Series 42 pp 245– (1980) [28] Tsay R. S., Journal of the American Statistical Association 81 pp 131– (1986) [29] Tsay R. S., Journal of Forecasting 7 pp 1– (1988) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.