Dupuy, Jean-François; Grama, Ion; Mesbah, Mounir Asymptotic theory for the Cox model with missing time-dependent covariate. (English) Zbl 1092.62100 Ann. Stat. 34, No. 2, 903-924 (2006). Summary: The relationship between a time-dependent covariate and survival times is usually evaluated via the Cox model. Time-dependent covariates are generally available as longitudinal data collected regularly during the course of the study. A frequent problem, however, is the occurence of missing covariate data. A recent approach to estimation in the Cox model in this case jointly models survival and the longitudinal covariate. However, theoretical justification of this approach is still lacking. We prove existence and consistency of the maximum likelihood estimators in a joint model. The asymptotic distribution of the estimators is given along with a consistent estimator of the asymptotic variance. Cited in 12 Documents MSC: 62N02 Estimation in survival analysis and censored data 62G20 Asymptotic properties of nonparametric inference 62N01 Censored data models 62G05 Nonparametric estimation 62E20 Asymptotic distribution theory in statistics Keywords:time-dependent Cox model; survival data; missing time-dependent covariate; maximum likelihood estimation; consistency × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. Ann. Statist. 10 1100–1120. · Zbl 0526.62026 · doi:10.1214/aos/1176345976 [2] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models . Johns Hopkins Univ. Press, Baltimore, MD. · Zbl 0786.62001 [3] Breslow, N. E. (1972). Discussion of “Regression models and life-tables,” by D. R. Cox. J. Roy. Statist. Soc. Ser. B 34 216–217. JSTOR: [4] Breslow, N. E. (1974). Covariance analysis of censored survival data. Biometrics 30 89–99. [5] Chen, H. Y. and Little, R. J. A. (1999). Proportional hazards regression with missing covariates. J. Amer. Statist. Assoc. 94 896–908. JSTOR: · Zbl 0996.62092 · doi:10.2307/2670005 [6] Cox, D. R. (1972). Regression models and life-tables (with discussion). J. Roy. Statist. Soc. Ser. B 34 187–220. JSTOR: · Zbl 0243.62041 [7] Cox, D. R. (1975). Partial likelihood. Biometrika 62 269–276. JSTOR: · Zbl 0312.62002 · doi:10.1093/biomet/62.2.269 [8] Dafni, U. G. and Tsiatis, A. A. (1998). Evaluating surrogate markers of clinical outcome when measured with error. Biometrics 54 1445–1462. · Zbl 1058.62597 · doi:10.2307/2533670 [9] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1–38. JSTOR: · Zbl 0364.62022 [10] Diggle, P. J., Liang, K.-Y. and Zeger, S. L. (1994). Analysis of Longitudinal Data . Oxford Univ. Press. · Zbl 1031.62002 [11] Dupuy, J.-F. (2002). Modélisation conjointe de données longitudinales et de durées de vie. Ph.D. dissertation, Univ. René Descartes, Paris. [12] Dupuy, J.-F. (2005). The proportional hazards model with covariate measurement error. J. Statist. Plann. Inference 135 260–275. · Zbl 1074.62065 · doi:10.1016/j.jspi.2004.05.003 [13] Dupuy, J.-F., Grama, I. and Mesbah, M. (2003). Normalité asymptotique des estimateurs semiparamétriques dans le modèle de Cox avec covariable manquante nonignorable. C. R. Acad. Sci. Paris Ser. I Math. 336 81–84. · Zbl 1032.62093 · doi:10.1016/S1631-073X(03)00003-7 [14] Dupuy, J.-F. and Mesbah, M. (2002). Joint modeling of event time and nonignorable missing longitudinal data. Lifetime Data Anal. 8 99–115. · Zbl 1030.62081 · doi:10.1023/A:1014871806118 [15] Dupuy, J.-F. and Mesbah, M. (2004). Estimation of the asymptotic variance of semiparametric maximum likelihood estimators in the Cox model with a missing time-dependent covariate. Comm. Statist. Theory Methods 33 1385–1401. · Zbl 1114.62325 · doi:10.1081/STA-120030156 [16] Grenander, U. (1981). Abstract Inference . Wiley, New York. · Zbl 0505.62069 [17] Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1 465–480. · Zbl 1089.62519 · doi:10.1093/biostatistics/1.4.465 [18] Jacobsen, M. (1984). Maximum likelihood estimation in the multiplicative intensity model: A survey. Internat. Statist. Rev. 52 193–207. JSTOR: · Zbl 0562.62039 · doi:10.2307/1403102 [19] Li, Y. and Lin, X. (2000). Covariate measurement errors in frailty models for clustered survival data. Biometrika 87 849–866. JSTOR: · Zbl 1028.62078 · doi:10.1093/biomet/87.4.849 [20] Lin, D. Y. and Ying, Z. (1993). Cox regression with incomplete covariate measurements. J. Amer. Statist. Assoc. 88 1341–1349. JSTOR: · Zbl 0794.62073 · doi:10.2307/2291275 [21] McKeague, I. W. (1986). Estimation for a semimartingale regression model using the method of sieves. Ann. Statist. 14 579–589. · Zbl 0651.62084 · doi:10.1214/aos/1176349939 [22] Mesbah, M., Dupuy, J.-F., Heutte, N. and Awad, L. (2004). Joint analysis of longitudinal quality-of-life and survival processes. In Advances in Survival Analysis (N. Balakrishnan and C. R. Rao, eds.) 689–728. North Holland, Amsterdam. [23] Murphy, S. A. (1994). Consistency in a proportional hazards model incorporating a random effect. Ann. Statist. 22 712–731. · Zbl 0827.62033 · doi:10.1214/aos/1176325492 [24] Murphy, S. A. (1995). Asymptotic theory for the frailty model. Ann. Statist. 23 182–198. · Zbl 0822.62069 · doi:10.1214/aos/1176324462 [25] Murphy, S. A. and Sen, P. K. (1991). Time-dependent coefficients in a Cox-type regression model. Stochastic Process. Appl. 39 153–180. · Zbl 0754.62069 · doi:10.1016/0304-4149(91)90039-F [26] Paik, M. C. and Tsai, W.-Y. (1997). On using the Cox proportional hazards model with missing covariates. Biometrika 84 579–593. JSTOR: · Zbl 0888.62092 · doi:10.1093/biomet/84.3.579 [27] Rudin, W. (1991). Functional Analysis , 2nd ed. McGraw-Hill, New York. · Zbl 0867.46001 [28] Scharfstein, D. O., Tsiatis, A. A. and Gilbert, P. B. (1998). Semiparametric efficient estimation in the generalized odds-rate class of regression models for right-censored time-to-event data. Lifetime Data Anal. 4 355–391. · Zbl 0941.62043 · doi:10.1023/A:1009634103154 [29] Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88 447–458. JSTOR: · Zbl 0984.62078 · doi:10.1093/biomet/88.2.447 [30] Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statist. Sinica 14 809–834. · Zbl 1073.62087 [31] Tsiatis, A. A., DeGruttola, V. and Wulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. J. Amer. Statist. Assoc. 90 27–37. · Zbl 0818.62102 · doi:10.2307/2291126 [32] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge Univ. Press. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256 [33] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes . Springer, New York. · Zbl 0862.60002 [34] Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53 330–339. JSTOR: · Zbl 0874.62140 · doi:10.2307/2533118 [35] Zhou, H. and Pepe, M. S. (1995). Auxiliary covariate data in failure time regression. Biometrika 82 139–149. JSTOR: · Zbl 0823.62100 · doi:10.1093/biomet/82.1.139 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.