zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence behaviour of inexact Newton methods under weak Lipschitz condition. (English) Zbl 1092.65043
The paper is concerned with solving iteratively systems of nonlinear equations by an inexact Newton method and by an inexact Newton-like method. The local convergence properties of these methods are discussed under weaker Lipschitz conditions than the affine invariant Lipschitz condition [see {\it B. Morini}, Math. Comput. 68, No. 228, 1605--1613 (1999; Zbl 0933.65050)], called center Lipschitz condition, respectively radius Lipschitz condition. The authors use, like other authors, an inexact Newton method and an inexact Newton-like method where a scaled relative residual control is performed at each iteration. The results obtained allow us to see how large the radius of the convergence ball is. Two concrete examples are given.

MSC:
65H10Systems of nonlinear equations (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Chen, Y.; Cai, D. Y.: Inexact overlapped block Broyden methods for solving nonlinear equations. Appl. math. Comput. 136, 215-228 (2003) · Zbl 1030.65048
[2] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T.: Inexact Newton methods. SIAM J. Numer. anal. 19, 400-408 (1982) · Zbl 0478.65030
[3] Dennis, J. E.: On Newton-like methods. Numer. math. 11, 324-330 (1968) · Zbl 0165.17303
[4] Dennis, J. E.: On the Kantorovich hypothesis for Newton’s method. SIAM J. Numer. anal. 6, 493-507 (1969) · Zbl 0221.65098
[5] Dennis, J. E.; Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations. (1983) · Zbl 0579.65058
[6] Deuflhard, P.; Heindl, G.: Affine invariant convergence theroem for Newton methods and extension to related methods. SIAM J. Numer. anal. 16, 1-10 (1979) · Zbl 0395.65028
[7] Galligani, E.: The Newton-arithmetic mean method for the solution of systems of nonlinear equations. Appl. math. Comput. 134, 9-34 (2003) · Zbl 1047.65031
[8] Jackson, K. R.: The numerical solution of large systems of stiff ivps for odes. Appl. numer. Math. 20, 5-20 (1996) · Zbl 0852.65057
[9] Kantorovich, L. V.; Akilov, G. P.: Functional analysis. (1982) · Zbl 0484.46003
[10] Kress, R.: Numerical analysis. (1998) · Zbl 0913.65001
[11] Martinez, J. M.; Qi, L.: Inexact Newton methods for solving nonsmooth equations. J. comput. Appl. math. 60, 127-145 (1995) · Zbl 0833.65045
[12] Miel, G. J.: Majorizing sequences and error bounds for iterative methods. Math. comp. 34, 185-202 (1980) · Zbl 0425.65033
[13] Morini, B.: Convergence behaviour of inexact Newton method. Math. comp. 68, 1605-1613 (1999) · Zbl 0933.65050
[14] Ortega, J. M.; Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. (1970) · Zbl 0241.65046
[15] Traub, J. F.; Wozniakowski, H.: Convergence and complexity of Newton iteration. J. assoc. Comput. math. 29, 250-258 (1979) · Zbl 0403.65019
[16] Wang, X.: The convergence on Newton’s method. Kexue tongbao (A special issue of mathematics, physics & chemistry) 25, 36-37 (1980)
[17] Wang, X.: Convergence of Newton’s method and inverse function in Banach space. Math. comp. 68, 169-186 (1999) · Zbl 0923.65028
[18] Wang, X.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. anal. 20, 123-134 (2000) · Zbl 0942.65057
[19] Ypma, T. J.: Affine invariant convergence results for Newton’s method. Bit 22, 108-118 (1982) · Zbl 0481.65027