×

zbMATH — the first resource for mathematics

A blind definition of shape. (English) Zbl 1092.68679
Summary: We propose a general definition of shape which is both compatible with the one proposed in phenomenology (gestaltism) and with a computer vision implementation. We reverse the usual order in Computer Vision. We do not define “shape recognition” as a task which requires a “model” pattern which is searched in all images of a certain kind. We give instead a “blind” definition of shapes relying only on invariance and repetition arguments. Given a set of images \(\mathcal I\), we call shape of this set any spatial pattern which can be found at several locations of some image, or in several different images of \(\mathcal I\). (This means that the shapes of a set of images are defined without any a priori assumption or knowledge.) The definition is powerful when it is invariant and we prove that the following invariance requirements can be matched in theory and in practice: local contrast invariance, robustness to blur, noise and sampling, affine deformations. We display experiments with single images and image pairs. In each case, we display the detected shapes. Surprisingly enough, but in accordance with Gestalt theory, the repetition of shapes is so frequent in human environment, that many shapes can even be learned from single images.
MSC:
68T45 Machine vision and scene understanding
62H35 Image analysis in multivariate analysis
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] S. Abbasi and F. Mokhtarian , Retrieval of similar shapes under affine transformation , in Proc. International Conference on Visual Information Systems. Amsterdam, The Netherlands ( 1999 ) 566 - 574 .
[2] L. Alvarez , F. Guichard , P.-L. Lions and J.M. Morel , Axioms and fundamental equations of image processing: Multiscale analysis and P .D.E. Arch. Rational Mech. Anal. 16 ( 1993 ) 200 - 257 . MR 1225209 | Zbl 0788.68153 · Zbl 0788.68153 · doi:10.1007/BF00375127
[3] S. Angenent , G. Sapiro and A. Tannenbaum , On the affine heat flow for nonconvex curves . J. Amer. Math. Soc. ( 1998 ). MR 1491538 | Zbl 0902.35048 · Zbl 0902.35048 · doi:10.1090/S0894-0347-98-00262-8
[4] H. Asada and M. Brady , The curvature primal sketch . PAMI 8 ( 1986 ) 2 - 14 .
[5] L.G. Brown , A survey of image registration techniques . ACM Comput. Surveys 24 ( 1992 ) 325 - 376 .
[6] V. Caselles , B. Coll and J.M. Morel , Topographic maps and local contrast changes in natural images . Int. J. Comput. Vision 33 ( 1999 ) 5 - 27 .
[7] V. Caselles , B. Coll and J.M. Morel , Geometry and color in natural images . J. Math. Imaging Vision ( 2002 ). MR 1892677 | Zbl 0994.68167 · Zbl 0994.68167 · doi:10.1023/A:1013943314097
[8] T. Cohignac , C. Lopez and J.M. Morel , Integral and local affine invariant parameter and application to shape recognition , in ICPR 94 ( 1994 ) A164-A168.
[9] A. Desolneux , L. Moisan and J.M. Morel , Edge detection by Helmholtz principle . J. Math. Imaging Vision (to appear). Zbl 0988.68819 · Zbl 0988.68819 · doi:10.1023/A:1011290230196
[10] F. Dibos , From the projective group to the registration group: A new model . Preprint ( 2000 ). MR 1836089 | Zbl 1008.68150 · Zbl 1008.68150 · doi:10.1016/S0764-4442(01)01938-3
[11] R.O. Duda and P.E. Hart , Pattern Classification and Scene Analysis . Wiley ( 1973 ). Zbl 0277.68056 · Zbl 0277.68056
[12] G. Dudek and J.K. Tsotsos , Shape representation and recognition from multiscale curvature . CVIU 2 ( 1997 ) 170 - 189 .
[13] O. Faugeras and R. Keriven , Some recent results on the projective evolution of 2d curves , in Proc. IEEE International Conference on Image Processing. Washington DC ( 1995 ) 13 - 16 .
[14] F. Guichard and J.M. Morel , Image iterative smoothing and P .D.E.’s (in preparation).
[15] R.K. Hu , Visual pattern recognition by moments invariants . IEEE Trans. Inform. Theor. ( 1962 ) 179 - 187 . Zbl 0102.13304 · Zbl 0102.13304
[16] G. Kanizsa , Organization in vision: Essays on gestalt perception , in Praeger ( 1979 ).
[17] A. Krzyzak , S.Y. Leung and C.Y. Suen , Reconstruction of two-dimensional patterns from Fourier descriptors . MVA 2 ( 1989 ) 123 - 140 .
[18] C.C. Lin and R. Chellappa , Classification of partial 2-d shapes using fourier descriptors , in CVPR 86 ( 1986 ) 344 - 350 .
[19] J.L. Lisani , Comparaison automatique d’images par leurs formes , Ph.D. Dissertation. Universit√© Paris-Dauphine ( 2001 ).
[20] J.L. Lisani , L. Moisan , P. Monasse and J.M. Morel , Planar shapes in digital images . MAMS (submitted).
[21] J.L. Lisani , P. Monasse and L. Rudin , Fast shape extraction and applications . PAMI (submitted).
[22] D. Marr and E.C. Hildreth , Theory of edge detection . Proc. Roy. Soc. London Ser. A 207 ( 1980 ) 187 - 217 .
[23] G. Matheron , Random Sets and Integral Geometry . John Wiley, NY ( 1975 ). MR 385969 | Zbl 0321.60009 · Zbl 0321.60009
[24] W. Metzger , Gesetze des Sehens . Waldemar Kramer ( 1975 ).
[25] L. Moisan , Affine plane curve evolution: A fully consistent scheme . IEEE Trans. Image Process. 7 ( 1998 ) 411 - 420 . MR 1669520 | Zbl 0973.94002 · Zbl 0973.94002 · doi:10.1109/83.661191
[26] F. Mokhtarian and A.K. Mackworth , A theory of multiscale, curvature-based shape representation for planar curves . PAMI 14 ( 1992 ) 789 - 805 .
[27] P. Monasse , Contrast invariant image registration , in Proc. of International Conference on Acoustics, Speech and Signal Process., Vol. 6. Phoenix, Arizona ( 1999 ) 3221 - 3224 .
[28] P. Monasse and F. Guichard , Fast computation of a contrast-invariant image representation . IEEE Trans. Image Processing 9 ( 2000 ) 860 - 872 .
[29] M. Okutomi and T. Kanade , A locally adaptive window for signal matching . Int. J. Computer Vision 7 ( 1992 ) 143 - 162 .
[30] E. Persoon and K.S. Fu , Shape discrimination using fourier descriptors . SMC 7 ( 1977 ) 170 - 179 . MR 451923
[31] T.H. Reiss , Recognizing Planar Objects Using Invariant Image Features . Springer Verlag, Lecture Notes in Comput. Sci. 676 ( 1993 ). MR 1239444 | Zbl 0789.68120 · Zbl 0789.68120 · doi:10.1007/BFb0017553
[32] W.J. Rucklidge , Efficiently locating objects using the Hausdorff distance . Int. J. Computer Vision 24 ( 1997 ) 251 - 270 .
[33] G. Sapiro and A. Tannenbaum , Affine invariant scale-space . Int. J. Computer Vision 11 ( 1993 ) 25 - 44 . · Zbl 0793.53002
[34] J. Serra , Image Analysis and Mathematical Morphology . Academic Press, New York ( 1982 ). MR 753649 | Zbl 0565.92001 · Zbl 0565.92001
[35] C.H. Teh and Chin R , On image analysis by the method of moments . IEEE Trans. Pattern Anal. Machine Intelligence 10 ( 1998 ). Zbl 0709.94543 · Zbl 0709.94543 · doi:10.1109/34.3913
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.