Frey, P. J.; Alauzet, F. Anisotropic mesh adaptation for CFD computations. (English) Zbl 1092.76054 Comput. Methods Appl. Mech. Eng. 194, No. 48-49, 5068-5082 (2005). Summary: Unstructured mesh adaptation is now widely used in numerical simulations to improve the accuracy of the solutions as well as to capture the behavior of physical phenomena. In this paper, we propose a general purpose error estimate based on the interpolation error that produces an anisotropic metric map used to govern the mesh element creation. Application examples of CFD computations emphasize the efficiency of this approach. Cited in 75 Documents MSC: 76M99 Basic methods in fluid mechanics 65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs 65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs Keywords:a posteriori error estimate; interpolation error; metric map Software:NSC2KE PDF BibTeX XML Cite \textit{P. J. Frey} and \textit{F. Alauzet}, Comput. Methods Appl. Mech. Eng. 194, No. 48--49, 5068--5082 (2005; Zbl 1092.76054) Full Text: DOI OpenURL References: [1] F. Alauzet, P.J. Frey, Estimateur d’erreur géométrique et métriques anisotropes pour l’adaptation de maillage. Partie I: aspects théoriques, RR-4759, INRIA Rocquencourt, 2003. [2] Anglada, M.V.; Garcia, N.P.; Crosa, P.B., Directional adaptive surface triangulation, Comput. aided des., 16, 107-126, (1999) · Zbl 0911.68197 [3] D’Azevedo, E.F.; Simpson, B., On optimal triangular meshes for minimizing the gradient error, Numer. math., 59, 4, 321-348, (1991) · Zbl 0724.65006 [4] Babuška, I.; Rheinboldt, W.C., A posteriori error estimates for the finite element method, Int. J. numer. methods engrg., 12, 1597-1615, (1978) · Zbl 0396.65068 [5] Baker, T.J., Mesh adaptation strategies for problems in fluid dynamics, Finite elem. anal. des., 25, 3-4, 243-273, (1997) · Zbl 0914.76047 [6] Bank, R.E., Mesh smoothing using a posteriori estimates, SIAM J. numer. anal., 34, 3, 979-997, (1997) · Zbl 0873.65092 [7] Berzins, M., Mesh quality: A function of geometry, error estimates or both?, Engrg. comput., 15, 236-247, (1999) · Zbl 0958.65508 [8] Borouchaki, H.; Hecht, F.; Frey, P.J., Mesh gradation control, Int. J. numer. methods engrg., 43, 6, 1143-1165, (1998) · Zbl 0944.76071 [9] Borouchaki, H.; Chapelle, D.; George, P.L.; Laug, P.; Frey, P.J., Estimateurs d’erreur géométriques et adaptation de maillage, () [10] Castro-Diaz, M.J.; Hecht, F.; Mohammadi, B.; Pironneau, O., Anisotropic unstructured mesh adaptation for flow simulations, Int. J. numer. methods engrg., 25, 475-491, (1997) · Zbl 0902.76057 [11] Ciarlet, P.G., Introduction à L’analyse numérique matricielle et à L’optimisation, (1982), Masson Paris · Zbl 0488.65001 [12] Ciarlet, P.G., Basic error estimates for elliptic problems, (), 17-352 · Zbl 0875.65086 [13] H.L. deCougny, M.S. Shephard, Surface meshing using vertex insertion, in: Proc. 5th Int. Meshing Roundtable, Pittsburgh, PA, October 10-11, 1996, pp. 243-256. [14] Fortin, M., Estimation d’erreur a posteriori et adaptation de maillages, Rev. eur. élém. finis, 9, 4, (2000) · Zbl 0943.00026 [15] Frey, P.J.; George, P.L., Mesh generation. application to finite elements, (2000), Hermès Science Publ. Paris, Oxford [16] P.J. Frey, About surface remeshing, in: Proc. of 9th Int. Meshing Roundtable, New Orleans LO, USA, 2000, pp. 123-136. [17] P.J. Frey, Yams: A fully Automatic adaptive isotropic surface remeshing procedure, Rapport Technique INRIA, RT-0252, November 2001. [18] Frey, P.J., Generation and adaptation of computational surface meshes from discrete anatomical data, Int. J. numer. methods engrg., 60, 1049-1074, (2004) · Zbl 1053.92029 [19] George, P.L., Improvement on Delaunay based 3D automatic mesh generator, Finite elem. anal. des., 25, 3-4, 297-317, (1997) · Zbl 0897.65078 [20] P.L. George, , Adaptive anisotropic tetrahedral mesh generator, Technical Report INRIA, 2002. [21] F. Hecht, B. Mohammadi, Mesh adaptation by metric control for multi-scale phenomena and turbulence, AIAA Paper, 97-0859, 1997. [22] Löhner, R., Regridding surface triangulations, J. comput. phys., 126, 1-10, (1996) · Zbl 0862.65010 [23] Lucquin, B.; Pironneau, O., Introduction au calcul scientifique, (1996), Masson Paris · Zbl 0907.65105 [24] B. Mohammadi, Fluid dynamics computation with NSC2KE—an user-guide, Release 1.0, Technical Report INRIA, RT-0164, 1994. [25] Mohammadi, B.; George, P.L.; Hecht, F.; Saltel, E., 3D mesh adaptation by metric control for CFD, Rev. eur. élém. finis, 9, 4, 439-449, (2000) · Zbl 0966.76054 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.