Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. (English) Zbl 1092.76057

Summary: This paper deals with explicit spectral gap estiamtes for the linearized Boltzmann operator with hard potentials (and hard spheres). We prove that it can be reduced to the Maxwellian case, for which explicit estimates are already known. Such a method is constructive, does not rely on Weyl’s theorem, and thus does not require Grad’s splitting. The more physical idea of the proof is to use geometrical properties of the whole collision operator. In a second part, we use the fact that the Landau operator can be expressed as the limit of the Boltzmann operator as collisions become grazing in order to derive explicit spectral gap estimates for the linearized Landau operator with hard potentials.


76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
82D05 Statistical mechanics of gases
Full Text: DOI arXiv EuDML


[1] Bobylëv, A. V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, In Mathematical physics reviews, Vol. 7, 111-233. Soviet Sci. Rev. Sect. C Math. Phys. Rev. 7, Harwood Academic Publ., Chur, 1988. · Zbl 0850.76619
[2] Caflisch, R. E.: The Boltzmann equation with a soft potential. II. Non- linear, spatially-periodic. Comm. Math. Phys. 74 (1980), no. 2, 97-109. · Zbl 0434.76066 · doi:10.1007/BF01197752
[3] Carrilo, J., McCann, R. and Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19 (2003), no. 3, 971-1018. · Zbl 1073.35127 · doi:10.4171/RMI/376
[4] Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences 67. Springer-Verlag, New York, 1988. · Zbl 0646.76001
[5] Cercignani, C., Illner, R. and Pulvirenti, M.: The Mathematical theory of dilute gases. Applied Mathematical Sciences 106. Springer-Verlag, New York, 1994. · Zbl 0813.76001
[6] Czechowski, Z. and Palczewski, A.: Spectrum of the Boltzmann col- lision operator for radial cut-off potentials. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 28 (1980), no. 9-10, 387-396. · Zbl 0475.76076
[7] Degond, P. and Lemou, M.: Dispersion relations for the linearized Fokker-Planck equation. Arch. Rational Mech. Anal. 138 (1997), no. 2, 137-167. · Zbl 0888.35084 · doi:10.1007/s002050050038
[8] Desvillettes, L.: Entropy dissipation rate and convergence in kinetic equations. Comm. Math. Phys. 123 (1989), no. 4, 687-702. · Zbl 0688.76057 · doi:10.1007/BF01218592
[9] Desvillettes, L.: On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Statist. Phys. 21 (1992), no. 3, 259-276. · Zbl 0769.76059 · doi:10.1080/00411459208203923
[10] Desvillettes, L., Convergence towards the thermodynamical equilib- rium. In Trends in applications of mathematics to mechanics (Nice, 1998), 115-126. Monogr. Surv. Pure Appl. Math. 106. Chapman & Hall/CRC, Boca Raton, FL, 2000. · Zbl 0990.76078
[11] Desvillettes, L. and Villani, C: On the spatially homogeneous Lan- dau equation for hard potentials. II. H-theorem and applications. Comm. Partial Differential Equations 25 (2000), no. 1-2, 261-298. · Zbl 0951.35130 · doi:10.1080/03605300008821513
[12] Ellis, R. S. and Pinsky, M. A.: The first and second fluid approxima- tions to the linearized Boltzmann equation. J. Math. Pures Appl. (9) 54 (1975), 125-156. · Zbl 0286.35062
[13] Golse, F. and Poupaud, F.: Un résultat de compacité pour l’équation de Boltzmann avec potentiel mou. Application au probl‘ eme de demi-espace, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 12, 583-586. · Zbl 0604.76067
[14] Klaus, M.: Boltzmann collision operator without cut-off. Helv. Phys. Acta 50 (1977), no. 6, 893-903. 841
[15] Pao, Y. P.: Boltzmann collision operator with inverse-power intermolecu- lar potentials. I, II. Comm. Pure Appl. Math. 27 (1974), 407-428, 559-581. · Zbl 0304.45010 · doi:10.1002/cpa.3160270402
[16] Villani, C.: A review of mathematical topics in collisional kinetic the- ory. In Handbook of mathematical fluid dynamics, Vol. I, 71-305. North- Holland, Amsterdam, 2002. · Zbl 1170.82369
[17] Villani, C.: On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Models Methods Appl. Sci. 8 (1998), no. 6, 957-983. · Zbl 0957.82029 · doi:10.1142/S0218202598000433
[18] Villani, C.:, Contribution ‘ a l’étude mathématique des collisions en théorie cinétique. Master’s thesis, Univ. Paris-Dauphine France, 2000.
[19] Wang Chang, C. S., Uhlenbeck, G. E. and De Boer, J.: Studies in Statistical Mechanics, Vol. V. North-Holland, Amsterdam, 1970.
[20] Wennberg, B.: On an entropy dissipation inequality for the Boltzmann equation. C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 13, 1441-1446. · Zbl 0770.76059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.