zbMATH — the first resource for mathematics

On global smooth solutions to the 3D Vlasov-Nordström system. (English) Zbl 1092.85001
Summary: The Vlasov-Nordström system is a relativistic model describing the motion of a self-gravitating collisionless gas. A conditional existence result for global smooth solutions was obtained in S. Calogero and G. Rein [Commun. Partial Differ. Equations 28, No. 11–12, 1863–1885 (2003; Zbl 1060.35141)]. We give a new proof for this result.

85A05 Galactic and stellar dynamics
82C22 Interacting particle systems in time-dependent statistical mechanics
Full Text: DOI Numdam EuDML
[1] H. Andréasson, S. Calogero, G. Rein, Global classical solutions to the spherically symmetric Nordström-Vlasov system, Math. Proc. Cambridge Philos. Soc., in press
[2] F. Bouchut, F. Golse, C. Pallard, Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system, Rev. Mat. Iberoamericana, in press · Zbl 1064.35097
[3] Bouchut, F.; Golse, F.; Pallard, C., Classical solutions and the glassey – strauss theorem for the 3D vlasov – maxwell system, Arch. rational mech. anal., 170, 1-15, (2003) · Zbl 1044.76075
[4] Calogero, S., Spherically symmetric steady states of galactic dynamics in scalar gravity, Class. quantum grav., 20, 1729-1741, (2003) · Zbl 1030.83018
[5] Calogero, S.; Lee, H., The non-relativistic limit of the nordström – vlasov system, Comm. math. sci., 2, 19-34, (2004) · Zbl 1086.83016
[6] Calogero, S.; Rein, G., On classical solutions of the nordström – vlasov system, Comm. partial differential equations, 28, 1863-1885, (2003) · Zbl 1060.35141
[7] S. Calogero, G. Rein, Global weak solutions to the Nordström-Vlasov system, J. Differential Equations, in press · Zbl 1060.35027
[8] Friedrich, S., Global small solutions of the vlasov – nordström system
[9] Gelfand, I.; Shilov, G., Generalized functions. vol. I, (1964), Academic Press New York
[10] Glassey, R.; Strauss, W., Singularity formation in a collisionless plasma could occur only at high velocities, Arch. rational mech. anal., 92, 59-90, (1986) · Zbl 0595.35072
[11] Hawking, S.; Ellis, G., The large scale structure of space – time, Cambridge monographs math. phys., (1973), Cambridge University Press · Zbl 0265.53054
[12] Hörmander, L., The analysis of linear partial differential operators. I. distribution theory and Fourier analysis, (1983), Springer-Verlag Berlin · Zbl 0521.35001
[13] Klainerman, S.; Staffilani, G., A new approach to study the vlasov – maxwell system, Commun. pure appl. anal., 1, 103-125, (2002) · Zbl 1037.35088
[14] Lee, H., Global existence of solutions to the nordström – vlasov system in two space dimensions
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.