×

zbMATH — the first resource for mathematics

The control mechanism of interaction in a one-level organizational system. (English. Russian original) Zbl 1092.93001
Autom. Remote Control 66, No. 5, 819-836 (2005); translation from Avtom. Telemekh. 2005, No. 5, 156-174 (2005).
Summary: A problem of control of a one-level system is considered. In the case when the utility of participants of the system is transferable, the problem is solved by way of the construction of a stimulation mechanism that implements an optimal strategy of the entire system. In the case of the untransferable utility, a mechanism of control of parameters is put forward that affords the consistent interaction of the system participants at minimum losses.
MSC:
93A13 Hierarchical systems
93B50 Synthesis problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burkov, V.N., Osnovy matematicheskoi teorii aktivnykh sistem (Basics of the Mathematical Theory of Active Systems), Moscow: Nauka,1977.
[2] Burkov, V.N. and Novikov, D.A., Teoriya aktivnykh sistem: sostoyanie i perspektivy (The Theory of Active Systems. The State and Perspectives), Moscow: Sinteg, 1999.
[3] Gubko, M.V. and Novikov, D.A., Teoriya igr v upravlenii organizatsionnymi sistemami (The Theory of Games in Control of Organization Systems), Moscow: Sinteg, 2002.
[4] Novikov, D.A., Stimulirovanie v organizatsionnykh sistemakh (Stimulation in Organization Systems), Moscow: Sinteg, 2003.
[5] Novikov, D.A. and Tsvetkov, A.V., Mekhanizmy stimulirovaniya v mnogoelementnykh organizatsionnykh sistemakh (Stimulation Mechanisms in Multielement Organization Systems), Moscow: Inst. Probl. Upravlen., 2001.
[6] Burkov, V.N., Kuznetsov, N.A., and Novikov, D.A., Control Mechanisms in Network Structures, Avtom. Telemekh., 2002, no. 12, pp. 96–115. · Zbl 1116.91315
[7] Novikov, D.A., Setevye struktury i organizatsionnye sistemy (Network Structures and Organization Systems), Moscow: Inst. Probl. Upravlen., 2003.
[8] Novikov, D.A. and Tsvetkov, A.V., Mekhanizmy funktsionirovaniya organizatsionnykh sistem s raspredelennym kontrolem (Mechanisms of Functioning of Organization Systems with Distributed Control), Moscow: Inst. Probl. Upravlen., 2001.
[9] Voronin, A.A. and Mishin, S.P., Optimal’nye ierarkhicheskie struktury (Optimal Hierarchical Structures), Moscow: Inst. Probl. Upravlen., 2003.
[10] Mishin, S.P., Optimal Stimulation in Multilevel Hierarchical Structures, Avtom. Telemenkh., 2004, no. 5, pp. 96–119. · Zbl 1115.91352
[11] Bogatyrev, V.D., Modeli mekhanizmov vzaimodeistviya v aktivnykh proizvodstvenno-ekonomicheskikh sistemakh (Models of the Mechanisms of Interaction in Active Production-Economic Systems), Samara: SNTs Ross. Akad. Nauk, 2003.
[12] Burkov, V.N. and Novikov, D.A., Kak upravlyat’ proektami (How to Control Projects), Moscow: Sinteg-GEO, 1997.
[13] Bogatyrev, V.D., Modeli i mekhanizmy soglasovannogo vzaimodeistviya v zadachakh antikrizisnogo upravleniya (Models and Mechanisms of Consistent Interactions in the Problems of Anticrisis Control), Samara: SNTs Ross. Akad. Nauk, 2004.
[14] Germeier, Yu.B., Igry s neprotivopolozhnymi interesami (Games with Nonantogonistic Interests), Moscow: Nauka, 1976. · Zbl 0584.90097
[15] Burkov, V.N. and Novikov, D.A., Mechanisms of Critical Control of Active Systems in Stimulation Problems, Trudy Inst. Probl. Upravlen., 2000, vol. 10, pp. 76–85.
[16] Novikov, D.A., Mekhanizmy funktsionirovanniya mnogourovnevykh organizatsionnykh sistem (The Mechanisms of Functioning of Multilevel Organization Sistems), Moscow: Fond ”Problemy Upravleniya,” 1999.
[17] Frol’kis, V.A., Vvedenie v teoriyu i metody optimizatsii dlya ekonomistov (Introduction to the Theory and Optimization Methods for Economists), St. Petersburg: Piter, 2002.
[18] Intriligator, M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya (Mathematical Optimization Methods and Economic Theory), Moscow: Airis-Press, 2002.
[19] Novikov, D.A. and Tsvetkov, A.V., Decomposition of the Game of Active Elements in Stimulation Problems, Avtom. Telemekh., 2001, no. 2, pp. 173–180.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.