×

A nonlinear unified state-space model for ship maneuvering and control in a seaway. (English) Zbl 1092.93559

Summary: This article presents a unified state-space model for ship maneuvering, station-keeping, and control in a seaway. The frequency-dependent potential and viscous damping terms, which in classic theory results in a convolution integral not suited for real-time simulation, is compactly represented by using a state-space formulation. The separation of the vessel model into a low-frequency model (represented by zero-frequency added mass and damping) and a wave-frequency model (represented by motion transfer functions or RAOs), which is commonly used for simulation, is hence made superfluous.

MSC:

93C83 Control/observation systems involving computers (process control, etc.)
70Q05 Control of mechanical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bailey P. A., Trans. RINA 140 pp 131–
[2] DOI: 10.1049/PBCE008E · doi:10.1049/PBCE008E
[3] Bertram V., Practical Ship Hydrodynamics (2004)
[4] Bishop R. E. D., J. Mech. Engin. Sci. 23 pp 243– · doi:10.1243/JMES_JOUR_1981_023_045_02
[5] Denis M. St., Trans. SNAME 61 pp 280–
[6] Faltinsen O. M., Sea Loads on Ships and Offshore Structures (1990)
[7] O. M. Faltinsen and R. Zhao, Flow Predictions Around High-Speed Ships in Waves, Mathematical Approaches in Hydrodynamics (SIAM, 1991) pp. 1–27.
[8] Faltinsen O. M., Philos. Trans. Roy. Soc. Series A pp 241–
[9] Faltinsen O. M., Int. Symp. CFD and CAD in Ship Design (1990)
[10] Fathi D., ShipX Vessel Responses (VERES) (2004)
[11] Fathi D, Theory Manual, in: ShipX Vessel Responses ERES (2004)
[12] Fedyaevsky K. K., Control and Stability in Ship Design (1963)
[13] Fossen T. I., Guidance and Control of Ocean Vehicles (1994)
[14] Fossen T. I., Automatica 35 pp 3– · Zbl 0945.93589 · doi:10.1016/S0005-1098(98)00121-6
[15] Fossen T. I., Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (2002)
[16] Fossen T. I., Modelling, Identification and Control 25 pp 201– · doi:10.4173/mic.2004.4.1
[17] Gerritsma J., Int. Shipbuilding Progress 7 pp 49–
[18] Gerritsma J., Int. Shipbuilding Progress
[19] Grim O., Jahrbuch der Schiffsbautechnischen Gesellschaft 47 pp 277–
[20] Grimble M. J., Opt. Contr. Appl. Meth. 1 pp 167– · Zbl 0445.93038 · doi:10.1002/oca.4660010207
[21] Journée J. M. J., Offshore Hydromechanics (2001)
[22] DOI: 10.1049/ip-cta:19971030 · Zbl 0875.93341 · doi:10.1049/ip-cta:19971030
[23] Korsmeyer F. T., TiMIT – A Panel Method for Transient Wave-Body Interactions (1999)
[24] Korvin-Kroukovsky B. V., Trans. SNAME 65 pp 590–
[25] Lewis E. V., Principles of Naval Architecture (1989)
[26] DOI: 10.1111/j.1559-3584.1922.tb04958.x · doi:10.1111/j.1559-3584.1922.tb04958.x
[27] Newman J. N., Marine Hydrodynamics (1977)
[28] Perez T., Advances in Industrial Control Series, in: Ship Motion Control: Autopilots with Rudder Roll Stabilization and Combined Rudder-Fin Stabilizators (2005)
[29] Salvesen N., Trans. SNAME 78 pp 250–
[30] Techn. Res. Bull. pp 1–
[31] Sørensen A. J., IFAC J. Ann. Rev. Contr.
[32] Ursell F., Quart. J. Mech. Appl. Math.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.