Ulanskiĭ, E. A. Identities for generalized polylogarithms. (English. Russian original) Zbl 1093.11049 Math. Notes 73, No. 4, 571-581 (2003); translation from Mat. Zametki 73, No. 4, 613-624 (2003). Summary: We study the behavior of generalized polylogarithms under the action of the group of fractional-linear transformations of the argument. This group is formed by the transformations \(z\mapsto 1-z\) and \(z\mapsto-z/(1- z)\), the last of which allows us to obtain identities of the form \(\operatorname{Li}_k\big(\frac{-z}{1-z}\big) =-\sum_{|\bar s| =k} \operatorname{Li}_{\bar s}(z)\). We prove that these identities imply the linear independence of generalized polylogarithms and the algebraic independence of classical polylogarithms over the field \(\mathbb C(z)\). Cited in 4 Documents MSC: 11G55 Polylogarithms and relations with \(K\)-theory 11J81 Transcendence (general theory) 11M32 Multiple Dirichlet series and zeta functions and multizeta values 33B30 Higher logarithm functions 33C80 Connections of hypergeometric functions with groups and algebras, and related topics Keywords:generalized polylogarithm; fractional-linear transformation; multiple zeta function; classical polylogarithm; algebraic independence PDF BibTeX XML Cite \textit{E. A. Ulanskiĭ}, Math. Notes 73, No. 4, 571--581 (2003; Zbl 1093.11049); translation from Mat. Zametki 73, No. 4, 613--624 (2003) Full Text: DOI