# zbMATH — the first resource for mathematics

Modules cofinite with respect to an ideal. (English) Zbl 1093.13012
Let $$A$$ be a commutative noetherian ring. An $$A$$-module $$M$$ is $$\mathbf{a}$$-cofinite ($$\mathbf{a}$$ an ideal of $$A$$) if $$\text{Supp}_{A} M \subset V ( \mathbf{a})$$ and $$\text{Ext}_{A}^{i} (A/{\mathbf{a}},M)$$ is a finite module for all $$i \in R$$ [R. Hartshorne, Invent. Math. 9, 145–164 (1970; Zbl 0196.24301)]. In a previous paper [Math. Proc. Cambridge Philos. Soc. 125, 417–423 (1999; Zbl 0921.13009)], the author showed that one could require the finiteness of the Koszul cohomology modules $$H^{i}(x_{1}, \dots , x_{n} ; M)$$ where $$x_{1}, \dots x_{n}$$ are generators for $$\mathbf{a}$$, instead of the finiteness of the modules $$\text{Ext}_{A}^{i}(A/{\mathbf{a}}, M)$$ in the definition of $$\mathbf{a}$$-cofiniteness. In the proof of this, the change of ring principle involving a spectral sequence argument was used T. Marley and J. Vassilev [J. Algebra 256, 180–193 (2002; Zbl 1042.13010)]. An alternative proof of the change of ring principle which avoids spectral sequences is supplied in this paper.
Various conditions for cofiniteness are given, for example if $$x \in \mathbf{a},$$ $$\text{Supp}_{A} M \subseteq V(\mathbf{a})$$ and both $$0:_{M}x$$ and $$M/xm$$ are $$\mathbf{a}$$-cofinite, then so is $$M$$.
Minimax modules (i.e. modules that have a finite submodule such that the quotient by it is an artinian module) are also studied. A necessary and sufficient condition for an artinian module $$M$$ with support in $$V(\mathbf{a})$$ to be $$\mathbf{a}$$-cofinite is found. It is shown that if $$\dim(A)=1$$, then every $$\mathbf{a}$$-cofinite module is a minimax module and the class of $$\mathbf{a}$$-cofinite modules is closed with respect to submodules and quotients.
For $$M$$ a module over a ring of finite Krull dimension $$d$$, the top cohomology module $$H^{d}_{a}(M)$$ is studied. Conditions for $$H^{d}_{a}(M)$$ to be $$\mathbf{a}$$-cofinite are found.
In the final part, the question of when the kernel of a homomorphism between $$\mathbf{a}$$-cofinite modules is again $$\mathbf{a}$$-cofinite, is considered. This is known for a complete local ring [D. Delfino and T. Marley, J. Pure Appl. Algebra 121, 45–52 (1997; Zbl 0893.13005)]. Though the author does not succeed in proving this for a non-complete ring, the question is reduced to the study of certain local cohomology modules. Results on the case where $$\dim(A) \leq 2$$ are also obtained.

##### MSC:
 13D45 Local cohomology and commutative rings 13D07 Homological functors on modules of commutative rings (Tor, Ext, etc.)
Full Text:
##### References:
  Belshoff, R.; Wickham, C., A note on local duality, Bull. London math. soc., 29, 25-31, (1997) · Zbl 0891.13005  Brodmann, M.; Sharp, R.Y., Local cohomology: an algebraic introduction with geometric applications, (1998), Cambridge Univ. Press Cambridge, UK · Zbl 0903.13006  Delfino, D., On the cofiniteness of local cohomology modules, Math. proc. Cambridge philos. soc., 115, 79-84, (1994) · Zbl 0806.13005  Delfino, D.; Marley, T., Cofinite modules and local cohomology, J. pure appl. algebra, 121, 45-52, (1997) · Zbl 0893.13005  Enochs, E., Flat covers and flat cotorsion modules, Proc. amer. math. soc., 92, 179-184, (1984) · Zbl 0522.13008  Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), (1968), North-Holland Amsterdam · Zbl 0197.47202  Hartshorne, R., Cohomological dimension of algebraic varieties, Ann. of math., 88, 403-450, (1968) · Zbl 0169.23302  Hartshorne, R., Affine duality and cofiniteness, Invent. math., 9, 145-164, (1970) · Zbl 0196.24301  Huneke, C.; Koh, J., Cofiniteness and vanishing of local cohomology modules, Math. proc. Cambridge philos. soc., 110, 421-429, (1991) · Zbl 0749.13007  Kawasaki, K.-I., Cofiniteness of local cohomology modules for principal ideals, Bull. London math. soc., 30, 241-246, (1998) · Zbl 0930.13013  Lescot, J., Séries de Poincaré et modules inertes, J. algebra, 132, 22-49, (1990) · Zbl 0716.13011  Marley, T.; Vassilev, J., Cofiniteness and associated primes of local cohomology modules, J. algebra, 256, 180-193, (2002) · Zbl 1042.13010  McAdam, S., Primes associated to an ideal, Amer. math. soc., providence, RI, Contemp. math., vol. 102, (1989) · Zbl 0696.13002  Melkersson, L., On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. proc. Cambridge philos. soc., 107, 267-271, (1990) · Zbl 0709.13002  Melkersson, L., Some applications of a criterion for artinianness of a module, J. pure appl. algebra, 101, 291-303, (1995) · Zbl 0842.13014  Melkersson, L., Properties of cofinite modules and applications to local cohomology, Math. proc. Cambridge philos. soc., 125, 417-423, (1999) · Zbl 0921.13009  Rotman, J., An introduction to homological algebra, (1979), Academic Press San Diego · Zbl 0441.18018  Rudlof, P., On minimax and related modules, Canad. J. math., 44, 154-166, (1992) · Zbl 0762.13003  Schenzel, P., Flatness and ideal-transforms of finite type, (), 88-97  Schenzel, P.; Trung, N.V.; Cuong, N.T., Verallgemeinerte cohen – macaulay-moduln, Math. nachr., 85, 57-73, (1978) · Zbl 0398.13014  Stückrad, J.; Vogel, W., Buchsbaum rings and applications, (1986), Springer-Verlag Berlin · Zbl 0606.13018  Yoshida, K.-I., Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya math. J., 147, 179-191, (1997) · Zbl 0899.13018  Zink, T., Endlichkeitsbedingungen für moduln über einem noetherschen ring, Math. nachr., 164, 239-252, (1974) · Zbl 0297.13015  Zöschinger, H., Minimax moduln, J. algebra, 102, 1-32, (1986) · Zbl 0593.13012  Zöschinger, H., Über die maximalbedingung für radikalvolle untermoduln, Hokkaido math. J., 17, 101-116, (1988) · Zbl 0653.13011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.