Tsuzuki, Nobuo On base change theorem and coherence in rigid cohomology. (English) Zbl 1093.14503 Doc. Math. Extra Vol., Kazuya Kato’s Fiftieth Birthday, 891-918 (2003). Summary: We prove that the base change theorem in rigid cohomology holds when the rigid cohomology sheaves both for the given morphism and for its base extension morphism are coherent. Applying this result, we give a condition under which the rigid cohomology of families becomes an overconvergent isocrystal. Finally, we establish generic coherence of rigid cohomology of proper smooth families under the assumption of existence of a smooth lift of the generic fiber. Then the rigid cohomology becomes an overconvergent isocrystal generically. The assumption is satisfied in the case of families of curves. This example relates to P. Berthelot’s conjecture of the overconvergence of rigid cohomology for proper smooth families. Cited in 8 Documents MSC: 14F30 \(p\)-adic cohomology, crystalline cohomology 14F20 Étale and other Grothendieck topologies and (co)homologies 14D15 Formal methods and deformations in algebraic geometry PDF BibTeX XML Cite \textit{N. Tsuzuki}, Doc. Math. Extra Vol., 891--918 (2003; Zbl 1093.14503) Full Text: EuDML EMIS OpenURL