×

Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces. (English) Zbl 1093.35005

Bäcklund transformations are used in the calculation of soliton solutions of certain nonlinear evolution equations (NLEEs) [see R. K. Dodd, J. Phys. A 11, 81–92 (1978; Zbl 0368.35058)]. For some nonlinear evolution equations which describe pseudo-spherical surfaces two new exact solution classes are generated. Exact travelling wave and solitary wave solutions for Burgers’ equation \(2u_t-2uu_x-u_{xx}=0\) and also for a fifth-order evolution equation \(u_t+au^2u_x+bu_xu_{xx}+ huu_{xxx}+du_{xxxxx} =0\), where \(a,b,h\), and \(d\) are constants, containing the fifth-order Korteweg-de Vries equation and also the Sawada-Kotera equation [E. J. Parkes and B. R. Duffy, Comput. Phys. Commun. 98, No. 3, 288–300 (1996; Zbl 0948.76595)] are obtained by using an improved sine-cosine method and the Wu’s elimination method. Employing the Bäcklund transformations involving explicitly the wave solutions, new solutions are generated for Burgers’ equation. The obtained results are illustrated.

MSC:

35A30 Geometric theory, characteristics, transformations in context of PDEs
58J90 Applications of PDEs on manifolds
58J35 Heat and other parabolic equation methods for PDEs on manifolds
53A05 Surfaces in Euclidean and related spaces
35Q53 KdV equations (Korteweg-de Vries equations)
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35Q51 Soliton equations

Software:

ATFM
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068
[2] Beals, R.; Rabelo, M.; Tenenblat, K., Bäcklund transformations and inverse scattering solutions for some pseudo-spherical surfaces, Stud. Appl. Math., 81, 125-151 (1989) · Zbl 0697.58059
[3] Cavalcant, J. A.; Tenenblat, K., Conservation laws for nonlinear evolution equations, J. Math. Phys., 29, 1044-1049 (1988) · Zbl 0695.35038
[4] Chern, S. S.; Tenenblat, K., Pseudospherical surfaces and evolution equations, Stud. Appl. Math., 74, 55-83 (1986) · Zbl 0605.35080
[5] Crampin, M., Solitons and \(SL (2, R)\), Phys. Lett. A, 66, 170-172 (1978)
[6] Ding, Q., The NLS-equation and its \(SL (2, R)\) structure, J. Phys. A: Math. Gen., 33, 325-329 (2000)
[7] Ding, Q.; Tenenblat, K., On differential systems describing surfaces of constant curvature, J. Differential Equations, 184, 185-214 (2002) · Zbl 1022.58005
[8] Ding, Q.; Tenenblat, K., Gauge equivalence of differential equations describing surfaces of constant Gaussian curvature, Internat. J. Differential Equations Appl., 4, 273-284 (2002) · Zbl 1027.53005
[9] Dodd, R. K.; Bullough, R. K., Bäcklund transformations for the AKNS inverse method, Phys. Lett. A, 62, 70-74 (1977)
[11] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Lett., 19, 1095-1097 (1967) · Zbl 1061.35520
[12] Goursat, E., Le Problème de Bäcklund, in: Mémorial des Sciences Mathématiques, Fasc. VI (1925), Gauthier-Villars: Gauthier-Villars Paris
[13] Kamran, N.; Tenenblat, K., On differential equations describing pseudo-spherical surfaces, J. Differential Equations, 115, 75-98 (1995) · Zbl 0815.35036
[14] Khater, A. H.; Callebaut, D. K.; Abdalla, A. A.; Sayed, S. M., Exact solutions for self-dual Yang-Mills equations, Chaos Solitons Fractals, 10, 1309-1320 (1999) · Zbl 0963.81046
[15] Khater, A. H.; Callebaut, D. K.; Abdalla, A. A.; Shehata, A. M.; Sayed, S. M., Bäcklund transformations and exact solutions for self-dual \(\operatorname{SU}(3)\) Yang-Mills equations, Il Nuovo Cimento B, 114, 1-10 (1999)
[16] Khater, A. H.; Callebaut, D. K.; El-Kalaawy, O. H., Bäcklund transformations and exact soliton solutions for nonlinear Schrödinger-type equations, Il Nuovo Cimento B, 113, 1121-1136 (1998) · Zbl 0933.37068
[17] Khater, A. H.; Callebaut, D. K.; El-Kalaawy, O. H., Bäcklund transformations and exact solutions for a nonlinear elliptic equation modelling isothermal magentostatic atmosphere, IMA J. Appl. Math., 65, 97-108 (2000) · Zbl 0959.35056
[18] Khater, A. H.; Callebaut, D. K.; Ibrahim, R. S., Bäcklund transformations and Painlevé analysis: exact solutions for the unstable nonlinear Schrödinger equation modelling electron-beam plasma, Phys. Plasmas, 5, 395-400 (1998)
[19] Khater, A. H.; Callebaut, D. K.; Sayed, S. M., Conservation laws for some nonlinear evolution equations which describe pseudospherical surfaces, J. Geom. Phys., 51, 332-352 (2004) · Zbl 1069.37058
[21] Khater, A. H.; El-Kalaawy, O. H.; Callebaut, D. K., Bäcklund transformations for Alfvén solitons in a relativistic electron-positron plasma, Phys. Scripta, 58, 545-548 (1998)
[22] Khater, A. H.; Helal, M. A.; El-Kalaawy, O. H., Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Choas Solitons Fractals, 8, 1901-1909 (1997) · Zbl 0938.35169
[23] Khater, A. H.; Sayed, S. M., Exact solutions for self-dual SU(2) and SU(3) Yang-Mills fields, Internat. J. Theoret. Phys., 41, 409-419 (2002) · Zbl 1106.81311
[24] Khater, A. H.; Shehata, A. M.; Callebaut, D. K.; Sayed, S. M., Self-dual solutions for SU(2) and SU(3) gauge fields one Euclidean space, Internat. J. Theoret. Phys., 43, 151-159 (2004) · Zbl 1058.81053
[25] Konno, K.; Wadati, M., Simple derivation of Bäcklund transformation from Riccati Form of inverse method, Progr. Theoret. Phys., 53, 1652-1656 (1975) · Zbl 1079.35505
[26] Lamb, M. G., Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys., 15, 2157-2165 (1974)
[27] Lei, Y.; Fajiang, Z.; Yinghai, W., The homogeneous balance method, Lax pair, Hirota transformation and a general fifth-order KdV equation, Choas Solitons Fractals, 13, 337-340 (2002) · Zbl 1028.35132
[28] Parkes, E. J.; Duffy, B. R., An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., 98, 288-300 (1996) · Zbl 0948.76595
[29] Reyes, E. G., Pseudo-spherical surfaces and integrability of evolution equations, J. Differential Equations, 147, 195-230 (1998), (Erratum: J. Differential Equations 153 (1999) 223-224.) · Zbl 0916.35047
[30] Reyes, E. G., Some geometric aspects of integrability of differential equations in two independent variables, Acta Appl. Math., 64, 75-109 (2000) · Zbl 0995.35054
[31] Reyes, E. G., Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces, J. Math. Phys., 41, 2968-2989 (2000) · Zbl 0992.53005
[33] Reyes, E. G., Geometric integrability of the Camassa-Holm equation, Lett. Math. Phys., 59, 117-131 (2002) · Zbl 0997.35081
[34] Reyes, E. G., On generalized Bäcklund transformations for equations describing pseudo-spherical surfaces, J. Geom. Phys., 45, 368-392 (2003) · Zbl 1018.35068
[35] Reyes, E. G., Transformations of solutions for equations and hierarchies of pseudo-spherical type, J. Phys. A: Math. Gen., 36, 125-132 (2003)
[36] Rogers, C.; Schief, W. K., Bäcklund and Darboux transformations, in: Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1019.53002
[37] Rogers, C.; Shadwick, W., Bäcklund Transformations and their Applications (1982), Academic Press: Academic Press New York · Zbl 0492.58002
[38] Sasaki, R., Soliton equation and pseudospherical surfaces, Nuclear Phys. B, 154, 343-357 (1979)
[40] Wahlquist, H. D.; Estabrook, F. B., Bäcklund transformations for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett., 31, 1386-1390 (1973)
[41] Wahlquist, H. D.; Estabrook, F. B., Prolongation structures of nonlinear evolution equations, J. Math. Phys., 16, 1-7 (1975) · Zbl 0298.35012
[42] Wahlquist, H. D.; Estabrook, F. B., Prolongation structures of nonlinear evolution equations, II, J. Math. Phys., 17, 1293-1297 (1975) · Zbl 0333.35064
[43] Wang, M. L., Exact solution for a compound KdV-Burgers equation, Phys. Lett. A, 213, 279-287 (1996) · Zbl 0972.35526
[44] Wang, M. L.; Li, Z. B., Application of homogeneous balances method to exact solution of nonlinear equation in mathematical physics, Phys. Lett. A, 216, 67-75 (1996)
[46] Xia, T. C.; Zhang, H. Q.; Yan, Z. Y., New explicit exact traveling wave solution for a compound KdV-Burgers equation, Chinese Phys., 8, 694-699 (2001)
[47] Yan, C. T., A simple transformation for nonlinear waves, Phys. Lett. A, 224, 77-82 (1996)
[48] Yan, T. Z.; Zhang, H. Q., New explicit and exact traveling wave for a system variant Boussinesq equation in mathematical physics, Phys. Lett. A, 252, 291-296 (1999) · Zbl 0938.35130
[49] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62-69 (1972)
[50] Zhang, X. D.; Xia, T. C.; Zhang, H. Q., New explicit exact traveling wave solution for compound KdV-Burgers equation in mathematical physics, Appl. Math. E-Notes, 2, 45-50 (2002) · Zbl 0996.35068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.