zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The heterogeneous multiscale methods. (English) Zbl 1093.35012
A general methodology is presented to discuss and develop the heterogeneous multiscale method for the numerical computation of problems on heterogeneous media. The traditional approach for such problems is to obtain either analytically or empirically explicit equations for the scale of interest, eliminating other scales in the problem. In this paper, the authors present a general framework for designing and analysing numerical methods that deal with variational and dynamic problems. An efficient usage is made of the macroscopic and microscopic formulations to cover many of the existing methods but also to derive new technique from the general formulation. Application to problems such as homogenization, molecular dynamics, kinetic models and interfacial dynamics are discussed.

35B27Homogenization; equations in media with periodic structure (PDE)
35J20Second order elliptic equations, variational methods
74Q05Homogenization in equilibrium problems (solid mechanics)
76N25Flow control and optimization (compressible fluids and gas dynamics)
35F20General theory of first order nonlinear PDE
65J05General theory of numerical methods in abstract spaces
76M25Other numerical methods (fluid mechanics)
76M50Homogenization (fluid mechanics)
Full Text: DOI Euclid