×

Nonparametric growth curve model with local linear approximation. (English) Zbl 1093.62046

Summary: The growth curve model has been developed for longitudinal data, and its time trend is usually described by polynomials. However, it is difficult to interpret each coefficient of the polynomials with higher degrees, even when the number of repetitions is sufficiently large. We propose herein an alternative growth curve model having time-varying coefficients.

MSC:

62G08 Nonparametric regression and quantile regression
62H12 Estimation in multivariate analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1111/1467-9868.00233 · Zbl 04558573
[2] DOI: 10.1098/rstl.1825.0026
[3] DOI: 10.1111/j.0006-341X.2002.00121.x · Zbl 1209.62072
[4] DOI: 10.1093/biomet/85.4.809 · Zbl 0921.62045
[5] DOI: 10.2307/2529876 · Zbl 0512.62107
[6] DOI: 10.2307/2669396 · Zbl 0995.62043
[7] DOI: 10.1093/biomet/91.1.177 · Zbl 1132.62321
[8] DOI: 10.1081/SAC-120013120 · Zbl 1100.62524
[9] DOI: 10.2307/2532734
[10] Wand M. P., Kernel Smoothing (1995) · Zbl 0854.62043
[11] DOI: 10.1093/biomet/90.1.43 · Zbl 1034.62035
[12] DOI: 10.1111/1467-9868.00115 · Zbl 0909.62034
[13] Watanabe H., Jap. J. Cancer Res. 87 pp 51– (1996)
[14] DOI: 10.1198/016214502388618672 · Zbl 1048.62048
[15] DOI: 10.2307/2670121 · Zbl 0918.62039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.