zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Newton’s method for solving a system of fuzzy nonlinear equations. (English) Zbl 1093.65049
Summary: We propose the numerical solution for a system of fuzzy nonlinear equations by Newton’s method. The fuzzy quantities are presented in parametric form. Some numerical illustrations are given to show the efficiency of the algorithm.

65H10Systems of nonlinear equations (numerical methods)
08A72Fuzzy algebraic structures
26E50Fuzzy real analysis
Full Text: DOI
[1] Abbasbandy, S.; Asady, B.: Newton’s method for solving fuzzy nonlinear equations. Appl. math. Comput. 159, 349-356 (2004) · Zbl 1060.65049
[2] Buckley, J. J.; Qu, Y.: Solving fuzzy equations: a new solution concept. Fuzzy sets syst. 39, 291-301 (1991) · Zbl 0723.04005
[3] Cho, Y. J.; Huang, N. J.; Kang, S. M.: Nonlinear equations for fuzzy mapping in probabilistic normed spaces. Fuzzy sets syst. 110, 115-122 (2000) · Zbl 0949.47059
[4] Dubois, D.; Prade, H.: Fuzzy sets and systems: theory and application. (1980) · Zbl 0444.94049
[5] Fang, J.: On nonlinear equations for fuzzy mappings in probabilistic normed spaces. Fuzzy sets syst. 131, 357-364 (2002) · Zbl 1027.47081
[6] Goetschel, R.; Voxman, W.: Elementary calculus. Fuzzy sets syst. 18, 31-43 (1986) · Zbl 0626.26014
[7] Ma, J.; Feng, G.: An approach to H$\infty $control of fuzzy dynamic systems. Fuzzy sets syst. 137, 367-386 (2003) · Zbl 1053.93520
[8] Zadeh, L. A.: Fuzzy sets. Inform. control 8, 338-353 (1965) · Zbl 0139.24606
[9] Zimmermann, H. J.: Fuzzy sets theory and its application. (1991) · Zbl 0719.04002