zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations. (English) Zbl 1093.65096
The authors propose a numerical method for a parabolic equation with delay. The spatial derivative is handled with spectral collocation, and the resulting system of ordinary differential equations is solved by waveform relaxation, which is a form of Picard iteration. It is shown that the method converges.

MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
35R10Partial functional-differential equations
35K55Nonlinear parabolic equations
WorldCat.org
Full Text: DOI
References:
[1] Burrage, K.: Parallel and sequential methods for ordinary differential equations. (1995) · Zbl 0838.65073
[2] Burrage, K.; Jackiewicz, Z.; Nørsett, S. P.; Renaut, R.: Preconditioning waveform relaxation iterations for differential systems. Bit 36, 54-76 (1996) · Zbl 0864.65049
[3] Burrage, K.; Jackiewicz, Z.; Renaut, R.: The performance of preconditioned waveform relaxation techniques for pseudospectral methods. Numer. methods partial differential equations 12, 245-263 (1996) · Zbl 0863.65063
[4] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid mechanics. (1988) · Zbl 0658.76001
[5] Cohen, D. S.; Hagan, P. S.; Simpson, H. C.: Spatial structures in predator-prey communities with hereditary effects and diffusion. Math. biosci. 44, 167-177 (1979) · Zbl 0399.92016
[6] Fornberg, B.: A practical guide to pseudospectral methods. (1996) · Zbl 0844.65084
[7] G. Friesecke, A global bifurcation result for a delay-diffusion equation, Tech. Report No. 92, University of Bonn · Zbl 0763.35008
[8] Friesecke, G.: Exponentially growing solutions for a delay-diffusion equation with negative feedback. J. differential equations 98, 1-18 (1992) · Zbl 0763.35008
[9] Green, D.; Stech, H. W.: Diffusion and hereditary effects in a class of population models. Differential equations and applications in ecology, epidemics, and population problems, 19-28 (1981)
[10] Higham, D. J.; Sardar, T. K.: Existence and stability of fixed points for a discretized nonlinear reaction -- diffusion equation with delay. Appl. numer. Math. 18, 155-173 (1995) · Zbl 0834.65079
[11] Jackiewicz, Z.; Kwapisz, M.: Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J. Numer. anal. 33, 2303-2317 (1996) · Zbl 0889.34064
[12] Jackiewicz, Z.; Kwapisz, M.; Lo, E.: Waveform relaxation methods for functional-differential systems of neutral type. J. math. Anal. appl. 207, 255-285 (1997) · Zbl 0874.65056
[13] Kuang, Y.: Delay differential equations with applications in population dynamics. (1993) · Zbl 0777.34002
[14] E. Lelarasmee, The Waveform Relaxation Method for the Time Domain Analysis of Large Scale Nonlinear Dynamical Systems, PhD thesis, University of California, Berkeley, CA, 1982
[15] Lelarasmee, E.; Ruehli, A.; Sangiovanni-Vincentelli, A.: The waveform relaxation methods for time domain analysis of large scale integrated circuits. IEEE trans. CAD IC syst. 1, 131-145 (1982)
[16] Luckhaus, S.: Global boundedness for a delay-differential equation. Trans. amer. Math. soc. 294, 767-774 (1986) · Zbl 0604.35040
[17] Ludwig, D.; Jones, D. D.; Holling, C. S.: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. anim. Ecol. 47, 315-332 (1978)
[18] Murray, J. D.: Spatial structures in predator-prey communities --- a nonlinear time delay diffusional model. Math. biosci. 31, 73-85 (1976) · Zbl 0335.92002
[19] Murray, J. D.: Mathematical biology. (1993) · Zbl 0779.92001
[20] Murray, J. D.: Mathematical biology. I. an introduction. (2002) · Zbl 1006.92001
[21] T.K. Sardar, Dynamics of Constant and Variable Stepsize Methods for a Nonlinear Reaction -- Diffusion Model with Delay, PhD thesis, University of Dundee, Dundee, 1996
[22] Trefethen, L. N.: Spectral methods in Matlab. (2000) · Zbl 0953.68643
[23] Verhulst, P. F.: Notice sur la loi que la population suit dans son accroissement. Corr. math. Phys. 10, 113-121 (1838)
[24] Verhulst, P. F.: Recherche mathémathiques sur le loi d’accroissement de la population. Nouveau mém. Acad. roy. Sci. belles lett. Bruxelles 18, 3-38 (1845)
[25] Welfert, B. D.: On the eigenvalues of second-order pseudospectral differentiation operators. Comput. methods appl. Mech. engrg. 116, 281-292 (1994) · Zbl 0824.65083
[26] Welfert, B. D.: Generation of pseudospectral differentiation matrices. I. SIAM J. Numer. anal. 34, 1640-1657 (1997) · Zbl 0889.65013
[27] Wright, E. M.: A non-linear difference-differential equation. J. reine angew. Math. 494, 66-87 (1955) · Zbl 0064.34203
[28] Zubik-Kowal, B.; Vandewalle, S.: Waveform relaxation for functional-differential equations. SIAM J. Sci. comput. 21, 207-226 (1999) · Zbl 0945.65107
[29] Zubik-Kowal, B.: Chebyshev pseudospectral method and waveform relaxation for differential and differential-functional parabolic equations. Appl. numer. Math. 34, 309-328 (2000) · Zbl 0948.65102