zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decomposition methods for solving nonconvex quadratic programs via branch and bound. (English) Zbl 1093.90034
Summary: The aim of this paper is to suggest branch and bound schemes, based on a relaxation of the objective function, to solve nonconvex quadratic programs over a compact polyhedral feasible region. The various schemes are based on different d.c. decomposition methods applied to the quadratic objective function. To improve the tightness of the relaxations, we also suggest solving the relaxed problems with an algorithm based on the so called “optimal level solutions” parametrical approach.

90C20Quadratic programming
90C26Nonconvex programming, global optimization
90C31Sensitivity, stability, parametric optimization
90C57Polyhedral combinatorics, branch-and-bound, branch-and-cut
Full Text: DOI
[1] · Zbl 0958.90066 · doi:10.1023/A:1008306625093
[2] · Zbl 0872.90066 · doi:10.1023/A:1008278114178
[3] · Zbl 0966.90058 · doi:10.1023/A:1008328726430
[4] · Zbl 0809.90107 · doi:10.1007/BF01096531
[5] · Zbl 1041.90036 · doi:10.1023/A:1021509220392
[9] · Zbl 0172.43802 · doi:10.1287/mnsc.15.9.550
[11] Hiriart-Urruty, J.B. (1985), Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Convexity and Duality in Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 256, Springer-Verlag. · Zbl 0591.90073
[12] · Zbl 0337.90062 · doi:10.1007/BF01580678
[13] · Zbl 0437.90069 · doi:10.1007/BF01581645
[16] · Zbl 0844.90062 · doi:10.1007/BF00429750
[17] · Zbl 0355.90052 · doi:10.1007/BF01580380
[18] · Zbl 0905.90131 · doi:10.1023/A:1008288411710
[19] · Zbl 0748.90049 · doi:10.1016/0167-6377(91)90004-9
[20] · Zbl 0627.65072 · doi:10.1007/BF02239972
[21] · Zbl 0733.90051 · doi:10.1016/0898-1221(91)90163-X
[22] · Zbl 0858.90102 · doi:10.1016/0167-6377(95)00014-B
[23] · Zbl 0597.90066 · doi:10.1007/BF01580581