zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical models and methods in the water industry. (English) Zbl 1093.91051
Summary: The study field of water comprises a large variety of activities and interests, and therefore, areas of work. These areas face real engineering problems and, as a consequence, the contributions by some techniques from applied mathematics are really important. On the one hand, it is necessary to have analysis tools that allow us to carry out reliable simulations of the different models by analyzing different configurations, operation modes, load conditions, etc., in order to study existing installations from their basic characteristic data. They are determinist processes whose mathematical expressions consist of coupled systems of different types of equations, algebraic, ordinary differential, and partial differential equations, typically nonlinear, for which specific numerical techniques are necessary. In addition, given the uncertainty of many of the data (especially in existing configurations), it is frequently necessary to solve important inverse problems where other techniques (statistical, minimum quadratic, etc.) are also highly interesting. On the other hand, design is necessary in order to carry out new configurations. Frequently, the absence of initial data and the need of fulfilling different types of restrictions (some of them prone to subjectivity) turn design processes into real optimization problems where the classical methods frequently fail and for which the most current techniques based on neural networks, genetic algorithms, fuzzy theory, chaos theory, etc. are indispensable. This document describes the most important mathematical aspects needed in some of the stages of the integral cycle of water, with special emphasis on the most current topics.

MSC:
91B76Environmental economics (natural resource models, harvesting, pollution, etc.)
WorldCat.org
Full Text: DOI
References:
[1] Chorin, A. J.; Marsden, J. E.: A mathematical introduction to fluid mechanics. (1990) · Zbl 0712.76008
[2] Abreu, J.; Guarga, R.; Izquierdo, J.: Transitorios y oscilaciones en sistemas hidráulicos a presión. (1995)
[3] Izquierdo, J.; Iglesias, P. L.: Mathematical modelling of hydraulic transients in simple systems. Mathl. comput. Modelling 35, No. 7/8, 801-812 (2002) · Zbl 1054.76520
[4] Wood, D. J.; Rayes, A. M.: Reliability of algorithms for pipe network analysis. J. hydraulics division, ASCE 107, No. HY10, 1145-1161 (1981)
[5] Es: Análisis, diseño, operación y mantenimiento de redes hidráulicas a presión. (1997)
[6] Rauch, W.; Bertrand-Krajewski, J.; Krebs, P.; Mark, O.; Schilling, W.; Schtze, M.; Vanrolleghem, A.: Mathematical modelling of integrated urban drainage systems. Second international conference on interactions between sewers, treatment plants and receiving waters in urban areas--interurba II, 89-106 (2001)
[7] Fox, J. A.: Transient flow in pipes, open channels and sewers. (1989)
[8] Coen, F.; Petersen, B.; Vanrolleghem, P. A.; Vanderhaegen, B.; Henze, M.: Model-based characterization of hydraulic, kinetic and influent properties or an industrial WWTP. Sat. sci. Tech. 37, No. 12, 317-326 (1998)
[9] Espert, V.; López, P. A.; Izquierdo, J.: Fundamentals of a water quality model solution for dissolved oxygen in one-dimensional receiving system. Numerical modelling of hydrodynamic systems. Proc. of the intrnl. Workshop, 444-445 (1999)
[10] Cross, H.: Analysis of flow in networks of conduits or conductors. Bulletin no. 286 (1936)
[11] Shamir, U.; Howard, C. D. D.: Water distribution systems analysis. J. hydraulics division, ASCE 94, No. HY1, 219-234 (1994)
[12] Wood, D. J.; Charles, C. O. A.: Hydraulic network analysis using linear theory. J. hydraulics division, ASCE, proc. Paper 9031 98, 1157-1170 (1972)
[13] Todini, E.; Pilati, S.: A gradient algorithm for the analysis of pipe networks. Proceedings international conference on computer applications for water supply and distribution (1987)
[14] Salgado, R.; Rojo, J.; Zepeda, S.: Extended gradient method for full non-linear head and flow analysis. Integrated computer applications in water supply, volume I: Methods and procedures for systems simulation and control, 49-60 (1993)
[15] De Fluidos, Grupo Mecánica: SARA, software de análisis de redes de agua, manual de usuario. (1998)
[16] Rossman, L. A.: Manual de usuario de EPANET. Drinking water research group. (1997)
[17] Cabrera, E.; Izquierdo, J.; Abreu, J. M.; Iglesias, P. L.: Discussion of the paper ”filling of pipelines with undulating elevation profiles”. Journal of hydraulic engineering, ASCE, 1170-1173 (1997)
[18] Izquierdo, J.; Fuertes, V. S.; Cabrera, E.; Iglesias, P. L.; Garcia-Serra, J.: Pipeline start-up with entrapped air. Journal of hydraulic research 37, No. 5, 579-590 (1999)
[19] Chaudhry, H. M.: Applied hydraulic transients. (1987)
[20] Wylie, E. B.; Streeter, V. L.: Fluid transients in systems. (1993)
[21] Wood, D. J.; Dorsch, R. G.; Lightener, C.: Wave plan analysis of unsteady flow in closed conduits. Proc. ASCE J. Hyd. div. 92, 83-110 (1965)
[22] Wood, D. J.; Funk, J. E.: SURGE 5.0, computer analysis of transient flow in pipe networks including surge control devices. (1988)
[23] Chaudhry, H. M.: Numerical solution of transient-flow equations. Proc. hydraulic specialty conf. Amer. soc. Civ. engrs., 663-690 (1983)
[24] Baker, A. J.: Finite element computational fluid mechanics. (1983) · Zbl 0515.76001
[25] Watt, C. S.: Application of finite element method to unsteady flow problems. Ph.d. thesis (1975)
[26] Shih, Y. T.; Elman, H. C.: Modified streamline diffusion schemes for convection-diffusion problems. Comput. methods appl. Mech. eng. 174, 137-151 (1999) · Zbl 0957.76035
[27] Cockburn, B.; Shu, C. W.: The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. comput. Phys. 141, 199-224 (1998) · Zbl 0920.65059
[28] Cockburn, B.: Finite element methods for conservation laws. J. comput. Appl. math. 128, 187-204 (2001) · Zbl 0974.65092
[29] Dettmer, W.; Peric, C.: An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation. Comput. methods appl. Mech. eng. 192, 1177-1226 (2002) · Zbl 1091.76521
[30] Liggett, J. A.: The boundary element method--some fluid applications. Multidimensional fluid transients, 1-8 (1984)
[31] Gottlieb, D.; Orszag, S. A.: Theory of spectral methods for mixed initial-boundary value problems, parts I and II. (1977) · Zbl 0412.65058
[32] Gottlieb, D.; Hussaini, M. Y.; Orszag, S. A.: Theory and applications of spectral methods. Spectral methods for partial differential equations (1984) · Zbl 0599.65079
[33] Izquierdo, J.; Iglesias, P. L.; Cabrera, E.: DYAGATS--simulación mediante ordenador personal de transitorios en sistemas simples. VII encontro nacional de saneamiento basico (1996)
[34] Iglesias, P. L.: Modelo general de análisis de redes hidráulicas a presión en régimen transitorio. Tesis doctoral (Septiembre 2001)
[35] Izquierdo, J.; Iglesias, P. L.: Mathematical modelling of hydraulic transients in complex systems. Mathl. comput. Modelling 39, No. 4/5, 529-540 (2004) · Zbl 1112.76325
[36] Celia, M. A.; Russell, T. F.; Herrera, I.; Ewing, R. E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. water resour. 13, 187-206 (1990)
[37] Herrera, I.; Ewing, R. E.; Celia, M. A.; Russell, T. F.: Eulerian-Lagrange localized adjoint methods: the theoretical framework. Numer. methods pdes 9, 431-458 (1993) · Zbl 0784.65071
[38] Wang, H.; Ewing, R. E.; Qin, G.; Lyons, S. L.; Man, S.: A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations. J. comput. Phys. 152, 120-163 (1999) · Zbl 0956.76050
[39] Wiggert, D. C.; Sundquist, M. J.: Fixed-grid characteristics for pipeline transients. J. hydr. Engrg., ASCE 103, No. 13, 1403-1415 (1977)
[40] Goldberg, D. E.; Wylie, E. B.: Characteristics method using time-line interpolation. J. hydr. Engrg., ASCE 109, No. 5, 670-683 (1983)
[41] Lai, C.: Comprehensive method of characteristics for flow simulation. J. hydr. Engrg., ASCE 114, No. 9, 1074-1095 (1989)
[42] Holly, M.; Preissmann, A.: Accurate calculation of transport in two dimensions. J. hydr. Engrg., ASCE 103, No. 11, 1259-1277 (1977)
[43] Sibetheros, I. A.; Holley, E. R.; Branski, J. M.: Spline interpolation for waterhammer analysis. J. hydr. Engrg., ASCE 117, No. 10, 1332-1349 (1991)
[44] Karney, B. W.; Ghidaoui, M. S.: Flexible discretization algorithm for fixed-grid MOC in pipelines. J. hydr. Engrg., ASCE 123, No. 11, 1004-1011 (1997)
[45] Ghidaoui, M. S.; Karney, B. W.: Equivalent differential equations in fixed-grid characteristics method. J. hydr. Engrg., ASCE 120, No. 10, 1159-1175 (1994)
[46] Wang, X. J.; Lambert, M. F.; Simpson, A. R.; Ligget, J. A.; Vitkovsky, J. P.: Leak detection in pipelines using the damping of fluid transients. Journal of hydraulic engineering 128, No. 7, 697-711 (2002)
[47] Brunone, B.; Ferrante, M.: Detecting leaks in pressurized pipes by means of transients. Journal of hydraulic research 39, No. 4, 1-9 (2002)
[48] Mpesha, W.; Chaudhry, M. H.; Gassman, S. L.: Leak detection in pipes by frequency response method using a step excitation. Journal of hydraulic research 40, No. 1, 55-62 (2002)
[49] Kusaka, Y.; Tani, A.: Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow. Math. mod. And meth. In appl. Sci. 12, 365-391 (2002) · Zbl 1040.35151
[50] Evje, S.; Fjelde, K. K.: Relaxation schemes for the calculation of two-phase flow in pipes. Mathl. comput. Modelling 36, No. 4/5, 535-567 (2002) · Zbl 1129.76345
[51] Speranza, A.: Suspension flows in a pipeline with partial phase separation. Mathl. comput. Modelling 33, No. 4/5, 445-467 (2001) · Zbl 1050.76054
[52] Mellado, M.; Rodríguez, R.: Efficient solution of fluid-structure vibration problems. Appl. numer. Analysis 36, 389-400 (2001) · Zbl 1033.74046
[53] Van Brummelen, E. H.; Hulshoff, S. J.; De Borst, R.: Energy conservation under incompatibility for fluid-structure interaction. Comput. models in appl. Mech. eng. 192, 2727-2748 (2003) · Zbl 1054.74567
[54] Bathe, K. J.; Pontaza, J. P.: A flow-condition-based interpolation mixed finite element procedure for higher Reynolds number fluid flows. Math. mod. And meth. In appl. Sci. 12, 525-539 (2002) · Zbl 1215.76059
[55] Vellando, P.; Puertas, J.; Colominas, I.: SUPG stabilized finite element resolution of the Navier-Stokes equations. Comput. models in appl. Mech. eng. 191, 5899-5922 (2002) · Zbl 1012.76054
[56] Ranjithan, S.; Eheart, J. W.; Garrett, J. H.: Application of neural network in groundwater remediation under conditions of uncertainty. New uncertainty concepts in hydrology and water resources, 133-140 (1995)
[57] Izquierdo, J.: Desarrollo de una herramienta para la optimización de la gestión de recursos hídricos en sistemas de distribución de agua basada en las redes neuronales. Proyecto CICYT de la dirección general de investigación del ministerio de ciencia y tecnología, de referencia REN2000-1152/HID (2003)
[58] Pérez, R.; Andreu, M.; Izquierdo, J.: Diseño de redes de distribución de agua. Ingeniería hidráulica aplicada a los sistemas de distribución de agua, 653-727 (1996)
[59] Alperovits, E.; Shamir, U.: Design of optimal water distribution systems. Water resources res. 1, No. 6, 885-900 (1977)
[60] Simpson, A. R.; Dandy, G. C.; Murphy, L. J.: Genetic algorithms compared to other techniques for pipe optimization. J. water resour. Plng. and mgmt., ASCE 120, No. 4, 423-443 (1994)
[61] Savic, D.; Walters, G.: Genetic algorithms for least-cost design of water distribution systems. J. water resour. Plng. and mgmt., ASCE 123, No. 2, 67-77 (1997)
[62] Xu, Ch.; Goulter, I. C.: Reliability-based optimal design of water distribution systems. J. water resour. Plng. and mgmt., ASCE 125, No. 6, 352-362 (1999)
[63] Goulter, I.: Analytical and simulation models for reliability analysis in water distribution systems. Improving efficiency and reliability in water distribution systems, 235-266 (1995)
[64] Goulter, I.; Coals, A.: Quantitative approaches to reliability in pipe networks. J. transp. Engrg., ASCE 112, No. 3, 287-301 (1986)
[65] Goulter, I.; Bouchart, F.: Reliability-constrained pipe network model. J. hydr. Engrg., ASCE 116, No. 2, 211-229 (1990)
[66] Mays, L. W.: Methodologies for assessment of aging water distribution systems. Rep. no. CRWR 227 (1989)
[67] Guercio, R.; Xu, Z.: Linearized optimization model for reliability-based design of water systems. J. hydr. Engrg., ASCE 123, No. 11, 1020-1026 (1997)
[68] Ostfeld, A.; Shamir, U.: Design of optimal reliable multiquality water-supply systems. J. of plng. Resour. and mgmgt., ASCE 122, No. 5, 322-333 (1996)
[69] Ben-Tal, A.; Eiger, G.; Outrata, J.; Zowe, J.: A nondifferentiable approach to decomposable optimization problems with an application to the design of water distribution networks. Advances in optimization lecture notes in economics and mathematical systems, 197-216 (1992) · Zbl 0790.90064
[70] Yen, B. C.; Cheng, S. T.; Melching, C. S.: First-order reliability analysis. Stochastic and risk analysis in hydraulic engineering, 1-36 (1986)
[71] Xu, C.; Goulter, I. C.: Uncertainty analysis of water distribution networks. Stochastic hydraulics ’96, 609-616 (1996)
[72] Tung, Y. K.: Uncertainty analysis in water resources engineering. Stochastic hydraulics ’96, 29-46 (1996)
[73] Kaufmann, A.; Gupta, M. M.: Introduction to fuzzy arithmetics: theory and applications. (1991) · Zbl 0754.26012
[74] Bardossy, A.; Duckstein, L.: Fuzzy rule-based modeling with application to geophysical, economic, biological and engineering systems. (1995)
[75] Hansen, E.: Global optimization using interval analysis. (1992) · Zbl 0762.90069
[76] Neumaier, A.: Interval methods for system of equations. (1990) · Zbl 0715.65030
[77] Revelli, R.; Ridolfi, L.: Fuzzy approach for analysis of pipe networks. J. hydr. Engrg., ASCE 128, No. 1, 93-101 (2002) · Zbl 1156.76456
[78] Yates, D. F.; Templeman, A. B.; Boffey, T. B.: The computational complexity of the problem of determining least capital cost designs for water supply systems. Engrg. optimization 7, No. 2, 142-155 (1984)
[79] Michalewicz, Z.: Genetic algorithms + data structures = evolutionary programs. (1992) · Zbl 0763.68054
[80] Walters, G. A.; Lohbeck, G.: Optimal layout of tree networks using genetic algorithms. Engrg. optimization 22, No. 1, 27-48 (1993)
[81] Murphy, L. J.; Simpson, A. R.: Genetic algorithms in pipe network optimization. Res. rep. No. R39 (1992)
[82] Walters, G. A.; Cembrowicz, R. G.: Optimal design of water distribution networks. Water supply systems, state of the art and future trends, 91-117 (1993)
[83] Savic, D. A.; Walters, G. A.: Genetic algorithms for least-cost design of water distribution networks. J. of water plng. And mgmt. 123, No. 2, 67-77 (1997)
[84] Wu, Z. Y.; Simpson, A. R.: A self-adaptative boundary search genetic algorithm and its application to water distribution systems. J. hydr. Research 40, No. 2, 191-199 (2002)
[85] Savic, D. A.; Walters, G. A.: Genetic algorithms and evolution programs for decision support. Proc. 4th int. Symp.: advances in logistics sci. And software, 70-80 (1994)
[86] Martínez, F.; Pérez, R.; Izquierdo, J.: Optimum design and reliability in water distribution systems. Improving efficiency and reliability in water distribution systems (1995)
[87] Neelakantan, T. R.; Pundarikanthan, N. V.: Neural network-based simulation-optimization model for reservoir operation. J. water resour. Plng. and mgmt., ASCE 2, 57-62 (2000)
[88] Johnson, V. M.; Leah, L. R.: Accuracy of neural network approximators in simulation-optimization. J. water resour. Plng. and mgmt., ASCE 2, 48-56 (2000)
[89] Hush, D. R.; Horne, B. G.: Progress in supervised neural networks. Signal processing mag. 4, 8-39 (1993)
[90] Izquierdo, J.; Escribano, A.; Iglesias, P. L.; Díaz, J. L.: Predimensionado de calderines antiariete mediante una red neuronal. SEREA, seminario hispano-brasileo sobre planificación, proyecto y operación de redes de abastecimiento de agua potable (2002)
[91] Likas, A.; Blekas, K.; Safylopatis, A.: Application of the fuzzy MIN-MAX neural network classifier to problems with continuous and discrete attributes. Proc. of IEEE workshop on neural networks for signal processing (NNSP ’94), 163-170 (1994)
[92] Blekas, K.; Likas, A.; Safylopatis, A.: A fuzzy neural network approach to classification based on proximity characteristics patterns. Proc. 9th IEEE int. Conference on tools with artificial intelligence (1997)
[93] Abbott, M. B.; Babovic, V. M.; Cunge, J. A.: Towards the hydraulics of the hydroinformatics era. J. hydr. Research 39, No. 4, 339-349 (2001)
[94] Dibike, Y. B.: Developing generic hydrodynamic models using artificial neural networks. J. hydr. Research 40, No. 2, 183-190 (2002)
[95] Cumberbatch, E.; Fitt, A.: Mathematical modeling, case studies from industry. (2001) · Zbl 0980.00003
[96] Fulford, G. R.; Broadbridge, P.: Industrial mathematics, case studies in the diffusion of heat and matter. (2002) · Zbl 0982.00007