zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Backward bifurcation of an epidemic model with treatment. (English) Zbl 1093.92054
Summary: An epidemic model with a limited resource for treatment is proposed to understand the effect of the capacity for treatment. It is assumed that the treatment rate is proportional to the number of infectives below the capacity and is a constant when the number of infectives is greater than the capacity. It is found that a backward bifurcation occurs if the capacity is small. It is also found that there exist bistable endemic equilibria if the capacity is low.

MSC:
92D30Epidemiology
34C60Qualitative investigation and simulation of models (ODE)
34D23Global stability of ODE
WorldCat.org
Full Text: DOI
References:
[1] Arino, J.; Mccluskey, C. C.; Den Driessche, P. Van: Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. math. 64, 260 (2003) · Zbl 1034.92025
[2] Anderson, R. M.; May, R. M.: Infectious diseases of humans, dynamics and control. (1991)
[3] Brauer, F.; Castillo-Chavez, C.: Mathematical models in population biology and epidemiology. Texts in applied mathematics 40 (2001) · Zbl 0967.92015
[4] Britton, N. F.: Essential mathematical biology. (2003) · Zbl 1037.92001
[5] Diekmann, O.; Heesterbeek, J. A. P.: Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Wiley series in mathematical and computational biology (2000) · Zbl 0997.92505
[6] Dushoff, J.; Huang, W.; Castillo-Chavez, C.: Backwards bifurcations and catastrophe in simple models of fatal diseases. J. math. Biol. 36, 227 (1998) · Zbl 0917.92022
[7] Feng, Z.; Thieme, H. R.: Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math. biosci. 128, 93 (1995) · Zbl 0833.92017
[8] Hadeler, K. P.; Den Driessche, P. Van: Backward bifurcation in epidemic control. Math. biosci. 146, 15 (1997) · Zbl 0904.92031
[9] Hethcote, H. W.: The mathematics of infectious disease. SIAM rev. 42, 599 (2000) · Zbl 0993.92033
[10] Hyman, J. M.; Li, J.: Modeling the effectiveness of isolation strategies in preventing STD epidemics. SIAM J. Appl. math. 58, 912 (1998) · Zbl 0905.92027
[11] Inaba, H.; Sekine, H.: A mathematical model for chagas disease with infection-age-dependent infectivity. Math. biosci. 190, 39 (2004) · Zbl 1049.92033
[12] Liu, W. M.; Levin, S. A.; Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. math. Biol. 23, 187 (1986) · Zbl 0582.92023
[13] Lizana, M.; Rivero, J.: Multiparametric bifurcations for a model in epidemiology. J. math. Biol. 35, 21 (1996) · Zbl 0868.92024
[14] Martcheva, M.; Thieme, H. R.: Progression age enhanced backward bifurcation in an epidemic model with super-infection. J. math. Biol. 46, 385 (2003) · Zbl 1097.92046
[15] Ruan, S.; Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. differ. Equat. 188, 135 (2003) · Zbl 1028.34046
[16] Den Driessche, P. Van; Watmough, J.: A simple SIS epidemic model with a backward bifurcation. J. math. Biol. 40, 525 (2000) · Zbl 0961.92029
[17] Takeuchi, Y.; Ma, Wanbiao; Beretta, E.: Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear anal. 42, 931 (2000) · Zbl 0967.34070
[18] Wang, W.; Ma, Z.: Global dynamics of an epidemic model with time delay. Nonlinear anal. Real world appl. 3, 365 (2002)
[19] Wang, W.; Ruan, S.: Bifurcation in an epidemic model with constant removal rate of the infectives. J. math. Anal. appl. 291, 775 (2004) · Zbl 1054.34071
[20] Wu, L.; Feng, Z.: Homoclinic bifurcation in an SIQR model for childhood diseases. J. differ. Equat. 168, 150 (2000) · Zbl 0969.34042