×

ARI/GARI, dimorphy and multiple zeta arithmetic: a first evaluation. (ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan.) (French) Zbl 1094.11032

This is an expository article on multiple zeta values (MZV): \[ \zeta(s_1,\dots,s_r;e_1,\dots,e_r)= \sum_{0<n_r<\cdots<n_1}\frac{e_r^{n_r}}{n_r^{s_r}} \cdots\frac{e_1^{n_1}}{n_1^{s_1}}, \] where \(e_j= \exp(2\pi i \varepsilon_j)\) is a root of unity. These MZVs have a remarkable property called ‘dimorphy’, i.e. they satisfy two kinds of ‘quadratic relations’. To study these relations, especially from its formal (symbolic) aspects, the author introduces a new structure: the Lie algebra ARI and its group GARI.

MSC:

11M41 Other Dirichlet series and zeta functions
17B99 Lie algebras and Lie superalgebras
33B15 Gamma, beta and polygamma functions
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Apéry, R., Irrationalité de ζ(2) et ζ(3). Astérisque61 (1979), 11-13. · Zbl 0401.10049
[2] Broadhurst, D.J., Conjectured Enumeration of irreducible Multiple Zeta Values, from Knots and Feynman Diagrams, preprint, Physics Dept., Open UniversityMilton Keynes, MK7 6AA, UK, Nov. 1996.
[3] Borwein, J., Three Adventures: Symbolically Discovered Identities for ζ(4n + 3) and like matters, July 14, 1997, Vienna, 9th Intern. Conference on Formal Power Series and Algebraic Combinatoics (available at: www. cecm. sfu. ca /preprints/)
[4] Cohen, H., Démonstration de l’irrationalité de ζ(3) (d’après Apéry). Séminaire de Théorie des Nombres de Grenoble, VI.1-VI.9, 1978.
[5] Drinfel’d, V.G., On quasi-triangular quasi-Hopf algebras and some groups related to Gal(Q/Q). Leningrad Math. J.2 (1991), 829-860. · Zbl 0728.16021
[6] Euler, L., Opera Omnia, Ser.1, Vol XV, Teubner, Berlin, 1997, pp 217-267.
[7] Ecalle, J., Théorie des invariants holomorphes. PhD, Orsay, 1974. The first part appeared in Journ. Math. Pures et Appl. 54 (1974).
[8] Ecalle, J., Les fonctions résurgentes, Vol.1,2,3. Publ. Math. Orsay, 1981-1985. · Zbl 0602.30029
[9] Ecalle, J., Weighted products and parametric resurgence. in: Méthodes résurgentes, Travaux en Cours, 47, pp 7-49, 1994, Ed. L.Boutet de Monvel. · Zbl 0834.34067
[10] Ecalle, J., A Tale of Three Structures: the Arithmetics of Multizetas, the Analysis of Singularities, the Lie algebra ARI. To appear in the Proceedings of the Mai 2001 Groningen Workshop on Singularities and Stokes Phenomena. · Zbl 1065.11069
[11] Ecalle, J., ARI/GARI, Dimorphy, and Multizetas: soon available on my Orsay WEB page.
[12] Ecalle, J., Six lessons on the canonical-explicit decomposition of multizetas into irreducibles, based on a DEA course delivered at Orsay in May-June 2003; to be submitted to the Ann. Toulouse ; soon on my Orsay WEB page.
[13] Goncharov, A.B., Polylogarithms in arithmetic and geometry. Proc. ICM-94, Zurich, 1995, pp. 374-387 · Zbl 0849.11087
[14] Goncharov, A.B., Multiple polylogarithms, Cyclotomy and Modular Complezes. Math. Research Letters5 (1998), 497-515. · Zbl 0961.11040
[15] Kac, V.G., Lie Superalgebras. Adv. Math.26 (1977), 8-96 · Zbl 0366.17012
[16] Minh, H.N., Petitot, M., Lyndon words, polylogarithms and the Riemann ζ function. submitted to Disc. Math. · Zbl 0959.68144
[17] Rivoal, T., Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers impairs. Thèse, Caen, 2001.
[18] Scheunert, M., The theory of Lie superalgebras. An introduction. Springer, 1979. · Zbl 0407.17001
[19] Zagier, D., Values of Zeta Functions and their Applications. First European Congress of Mathematics, Vol. 2, 427-512, Birkhäuser, Boston, 1994. · Zbl 0822.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.