zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent exponential stability of cellular neural networks with time-varying delays. (English) Zbl 1094.34055
The authors analyze certain nonlinear delay differential equations (with time-varying delays) that model cellular neural networks. These equations are of the form $$x'(t)=-Cx(t) + Af(x(t)) + Bf(x(t -\tau(t))) + u,$$ where $x\in \bbfR^n$, $A, B, C$ are constant matrices; $f$ is Lipschitzian and $\tau(t) > 0$. Sufficient conditions for global exponential stability are given.

MSC:
34K20Stability theory of functional-differential equations
34K25Asymptotic theory of functional-differential equations
34K60Qualitative investigation and simulation of models
92B20General theory of neural networks (mathematical biology)
WorldCat.org
Full Text: DOI
References:
[1] Chua, L. O.; Yang, L.: Cellular neural networks: theory and applications. IEEE trans. Circuits syst. I 35, 1257-1290 (1988) · Zbl 0663.94022
[2] Roska, T.; Chua, L. O.: Cellular neural networks with nonlinear and delay-type template. Int. J. Circuit theory appl. 20, 469-481 (1992) · Zbl 0775.92011
[3] Zhang, Q.; Ma, R.; Xu, J.: Stability of cellular neural networks with delay. Electron. lett. 37, 575-576 (2001)
[4] Zhang, Q.; Ma, R.; Wang, C.; Xu, J.: On the global stability of delayed neural networks. IEEE trans. Autom. contr. 48, 794-797 (2003)
[5] Zhang, Q.; Wei, X. P.; Xu, J.: Global exponential convergence analysis of delayed neural networks with time-varying delays. Phys. lett. A 318, 537-544 (2003) · Zbl 1098.82616
[6] Arik, S.: An improved global stability result for delayed cellular neural networks. IEEE trans. Circuits syst. I 49, 1211-1214 (2002)
[7] Arik, S.; Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks. IEEE trans. Circuits syst. I 47, 571-574 (2000) · Zbl 0997.90095
[8] Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks. IEEE trans. Neural networks 13, 1239-1242 (2002)
[9] Cao, J.: A set of stability criteria for delayed cellular neural networks. IEEE trans. Circuits syst. I 48, 494-498 (2001) · Zbl 0994.82066
[10] Cao, J.: New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. lett. A 307, 136-147 (2003) · Zbl 1006.68107
[11] Zhou, D.; Cao, J.: Globally exponential stability conditions for cellular neural networks with time-varying delays. Phys. lett. A 131, 487-496 (2002) · Zbl 1034.34093
[12] Driessche, P. V. D.; Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. math. 58, 1878-1890 (1998) · Zbl 0917.34036
[13] Hou, C.; Qian, J.: Stability analysis for neural dynamics with tine-varying delays. IEEE trans. Neural networks 9, 221-223 (1998)
[14] Lu, H.: On stability of nonlinear continuous-time neural networks with delays. Neural networks 13, 1135-1143 (2000)
[15] Huang, H.; Cao, J.: On global asymptotic stability of recurrent neural networks with time-varying delays. Appl. math. Comput. 142, 143-154 (2003) · Zbl 1035.34081
[16] Liao, X. X.; Wang, J.: Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays. IEEE trans. Circuits syst. I 50, 268-274 (2003)
[17] Chen, T.; Amari, S.: New theorems on global convergence of some dynamical systems. Neural networks 14, 251-255 (2001)
[18] Liao, X.; Chen, G.; Sanchez, E. N.: LMI-based approach for asymptotically stability analysis of delayed neural networks. IEEE trans. Circuits syst. I 49, 1033-1039 (2002)
[19] Liao, X.; Chen, G.; Sanchez, E. N.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural networks 15, 855-866 (2002)
[20] Yi, Z.: Global exponential stability and periodic solutions of delay Hopfield neural networks. Int. J. Syst. sci. 27, 227-231 (1996) · Zbl 0845.93071
[21] Zhang, J.: Globally exponential stability of neural networks with variable delays. IEEE trans. Circuits syst. I 50, 288-290 (2003)
[22] Cao, J.; Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE trans. Circuits syst. I 50, 34-44 (2003)
[23] Yu, G. J.; Lu, C. Y.; Tsai, J. S. H.; Su, T. J.; Liu, B. D.: Stability of cellular neural networks with time-varying delay. IEEE trans. Circuits syst. I 50, 677-679 (2003)
[24] Yi, Z.; Heng, P. A.; Fu, A. W. C.: Estimate of exponential convergence rate and exponential stability for neural networks. IEEE trans. Neural networks 10, 1487-1493 (1999)
[25] Yi, Z.; Yu, J.; Wu, Y.: Global stabiltiy analysis on a class of cellular neural networks. Sci. China, ser. E 44, 1-11 (2001)
[26] Arik, S.: Global asymptotic stability of a larger class of neural networks with constant time delay. Phys. lett. A 311, 504-511 (2003) · Zbl 1098.92501
[27] Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical science. (1979) · Zbl 0484.15016