[1] |
Arik, S.; Tavsanoglu, V.: Equilibrium analysis of delayed CNNS. IEEE trans. Circuits and systems I 45, 168-171 (1998) |

[2] |
Baldi, P.; Atiya, A. F.: How delays affect neural dynamics and learning. IEEE trans. Neural networks 5, 312-621 (1994) |

[3] |
Cao, J. D.: Global stability analysis in delayed cellular neural networks. Phys. rev. E 59, 5940-5944 (1999) |

[4] |
Cao, J. D.: New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. lett. A 307, 136-147 (2003) · Zbl 1006.68107 |

[5] |
Cao, J. D.; Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE tran. Cricuit and systems I 50, 34-44 (2003) |

[6] |
Cao, J. D.; Wang, J.: Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays. Neural netwoks 17, 379-390 (2004) · Zbl 1074.68049 |

[7] |
Cao, J. D.; Zhou, D. M.: Stability analysis of delayed cellular neural networks. Neural networks 11, 1601-1605 (1998) |

[8] |
Carpenter, G.: A geometric approach to singular perturbation problems with application to nerve implus equations. J. differential equations 23, 355-367 (1977) · Zbl 0341.35007 |

[9] |
Chua, L. O.; Yang, L.: Cellular neural networkstheory. IEEE trans. Circuits and systems 35, 1257-1272 (1988) · Zbl 0663.94022 |

[10] |
Cohen, M. A.; Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE trans. Systems man. Cybernet 35, 815-826 (1983) · Zbl 0553.92009 |

[11] |
Evans, J. W.: Nerve axon equs iistability at rest. Indiana univ. Math. J. 22, 75-90 (1973) |

[12] |
Gopalsamy, K.; He, X. Z.: Stability in asymmetric Hopfield nets with transmission delays. Physica D 76, 344-358 (1994) · Zbl 0815.92001 |

[13] |
Hastings, A.: Global stability in Lotka -- Volterra systems with diffusion. J. math. Biol. 6, 163-168 (1978) · Zbl 0393.92013 |

[14] |
He, Q. M.; Kang, L. S.: Existence and stability of global solution for generalized Hopfield neural networks system. Neural parallel sci. Comput. 2, 165-176 (1994) · Zbl 0815.92002 |

[15] |
Hopfield, J. J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. nat. Acad. sci. USA 81, 3088-3092 (1984) |

[16] |
Hopfield, J. J.; Tank, D. W.: Computing with neural circuitsa model. Science 233, 625-633 (1986) |

[17] |
Liang, J. L.; Cao, J. D.: Global exponential stability of reaction -- diffusion recurrent neural networks with time-varying delays. Phys. lett. A 314, 434-442 (2003) · Zbl 1052.82023 |

[18] |
Marcuss, C. M.; Westervelt, R. M.: Stability of analog neural networks with delay. Phys. rev. A 39, 347-359 (1989) |

[19] |
Mohamad, S.; Gopalsamy, K.: Dynamics of a class of discrete-time neurals networks and their continuous-time counterparts. Math. comput. Simulat. 53, 1-39 (2000) |

[20] |
Rao, V. S. H.; Phaneendra, Bh.R.M.: Global dynamics of bidirectional associative memory neural networks involving transmission delays and dead zones. Neural networks 12, 455-465 (1999) |

[21] |
Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O.: Stability and dynamics of delay-type general and cellular neural networks. IEEE trans. Circuits and systems I 39, 487-490 (1992) · Zbl 0775.92010 |

[22] |
Roska, T.; Wu, C. W.; Chua, L. O.: Stability of cellular neural networks with dominant nonlinear and delay-type templates. IEEE trans. Circuits and systems I 40, 270-272 (1993) · Zbl 0800.92044 |

[23] |
Rothe, F.: Convergence to the equilibrium state in the Volterra -- Lotka diffusion equations. J. math. Biol. 3, 319-324 (1976) · Zbl 0355.92013 |

[24] |
Wang, L. S.; Xu, D. Y.: Global exponential stability of Hopfield reaction -- diffusion neural networks with variable delays. Sci. China ser. F 46, 466-474 (2003) · Zbl 1186.82062 |

[25] |
Zhang, J. Y.: Global exponential stability of neural networks with variable delays. IEEE trans. Circuits and systems I 50, 288-290 (2003) |

[26] |
Zhang, J. Y.; Jin, X. S.: Global stability analysis in delayed Hopfield neural network models. Neural networks 13, 745-753 (2000) |

[27] |
Zhang, Q.; Wei, X. P.; Xu, J.: Global exponential stability of Hopfield neural networks with continuously distributed delays. Phys. lett. A 315, 431-436 (2003) · Zbl 1038.92002 |

[28] |
Zhao, H. Y.: Global stability of bidirectional associative memory neural networks with distributed delays. Phys. lett. A 297, 182-190 (2002) · Zbl 0995.92002 |

[29] |
Cao, J. D.; Liang, J. L.: Boundedness and stability for Cohen-Grossberg neural networks with time-varying delays. J. math. Anal. appl. 296, 665-685 (2004) · Zbl 1044.92001 |

[30] |
Cao, J. D.; Ho, D. W. C.: A general framework for global asympotic stability analysis of delayed neural networks based on LMI approach. Chaos, solitons and fractals 24, 1317-1329 (2005) · Zbl 1072.92004 |

[31] |
Cao, J. D.; Huang, D. -S.; Qu, Y. Z.: Global robust stability of delayed recurrent neural networks. Chaos, solitons and fractals 23, 221-229 (2005) · Zbl 1075.68070 |

[32] |
Cao, J. D.; Liang, J. L.; Lam, J.: Exponential stability of high-order bidirectional associative memory neural networks with time delays. Physica D 199, 425-436 (2004) · Zbl 1071.93048 |

[33] |
Cao, J. D.: Periodic solutions and exponential stability in delayed cellular neural networks. Physical review E 60, 3244-3248 (1999) |

[34] |
Cao, J. D.: Global stability conditions for delayed cnns. IEEE trans. Circuits and systems I 48, 1330-1333 (2001) · Zbl 1006.34070 |

[35] |
Cao, J. D.: A set of stability criteria for delayed cellular neural networks. IEEE trans. Circuits and systems I 48, 494-498 (2001) · Zbl 0994.82066 |

[36] |
Cao, J. D.: Exponential stability and periodic solution of delayed cellular neural networks, sci. China ser. E. 43, 328-336 (2000) · Zbl 1019.94041 |

[37] |
Cao, J. D.; Wang, J.; Liao, X. F.: Novel stability criteria of delayed cellular neural networks, int. J. neural systems. 13, 367-375 (2003) |