Chen, Yong; Yan, Zhenya Weierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota-Satsuma coupled KdV system. (English) Zbl 1094.65104 Appl. Math. Comput. 177, No. 1, 85-91 (2006). Summary: With the aid of symbolic computation, we investigate the generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) system via our Weierstrass semi-rational expansion method presented recently using the rational expansion of Weierstrass elliptic function and its first-order derivative. As a consequence, three families of new Weierstrass elliptic function solutions via Weierstrass elliptic function \(\wp(\xi;g_2,g_3)\) and its first-order derivative \(\wp'(\zeta;g_2,g_3)\). Moreover, the corresponding new Jacobi elliptic function solutions and solitary wave solutions are also presented, and when \(\zeta\to \infty\), these solitary wave solutions approach to some constants. Cited in 13 Documents MSC: 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 35Q53 KdV equations (Korteweg-de Vries equations) 35Q51 Soliton equations Keywords:symbolic computation; Hirota-Satsuma coupled Korteweg-de Vries (KdV) system; Weierstrass semi-rational expansion method; Weierstrass elliptic function; Jacobi elliptic function; solitary wave solutions PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Yan}, Appl. Math. Comput. 177, No. 1, 85--91 (2006; Zbl 1094.65104) Full Text: DOI References: [1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001 [2] Satsuma, J.; Hirota, R., J. Phys. Soc. Jpn., 51, 3390 (1982) [3] Hirota, R.; Satsuma, J., Phys. Lett. A, 50, 407 (1981) [4] Tam, H. W., J. Phys. Soc. Jpn., 68, 369 (1999) [5] Yan, Z. Y., Chaos, Soliton & Fractals, 15, 575 (2003) [6] Yan, Z. Y., Comput. Phys. Commun., 148, 30 (2002) [7] Yan, Z. Y., Commun. Theor. Phys., 43, 391 (2005) [8] Porubov, A. V.; Velarde, M. G., J. Math. Phys., 40, 884 (1999) [9] Yan, Z. Y., Z. Naturforsch. A, 59, 29 (2004) [10] Patrick, D. V., Elliptic Function and Elliptic Curves (1973), Cambridge University Press: Cambridge University Press Cambridge [11] Lawden, D. F., Elliptic Functions and Applications (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0562.53046 [12] Hon, Y. C.; Fan, E., Appl. Math. Comput., 146, 813 (2003) [13] Fan, E., Phys. Lett. A, 282, 18 (2001) [14] Chen, Y., Chin. Phys., 12, 1 (2003) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.