[1] |
Luenberger, D.: Introduction to dynamic systems: theory, models, and applications. (1979) · Zbl 0458.93001 |

[2] |
Berman, A.; Plemmons, R.: Non-negative matrices in the mathematical sciences. SIAM classics appl. Math. (1994) · Zbl 0815.15016 |

[3] |
L. Farina, S. Rinaldi, Positive Linear Systems, Wiley Interscience Series, 2000. |

[4] |
T. Haveliwala, S. Kamvar, The second eigenvalue of the Google matrix, Tech. Rep., Stanford University, March 2003. |

[5] |
R. Shorten, D. Leith, J. Foy, R. Kilduff, Towards an analysis and design framework for congestion control in communication networks, in: Proceedings of the 12th Yale Workshop on Adaptive and Learning Systems, 2003. · Zbl 1061.93531 |

[6] |
Jadbabaie, A.; Lin, J.; Morse, A. S.: Co-ordination of groups of mobile autonomous agents using nearest neighbour rules. IEEE trans. Automat. control 48, No. 6, 988-1001 (2003) |

[7] |
Shorten, R. N.; Narendra, K. S.; Mason, O.: On common quadratic Lyapunov functions. IEEE trans. Automat. control 48, No. 1, 110-113 (2003) |

[8] |
N. Oleng, K. Narendra, On the existence of diagonal solutions to the Lyapunov equation for a third order system, in: Proceedings of American Control Conference, 2003. |

[9] |
Kraaijevanger, J.: A characterization of Lyapunov diagonal stability using Hadamard products. Linear algebra appl. 151, 245-254 (1991) · Zbl 0724.15014 |

[10] |
Barker, G. P.; Berman, A.; Plemmons, R. J.: Positive diagonal solutions to the Lyapunov equations. Linear multilinear algebra 5, No. 3, 249-256 (1978) · Zbl 0385.15006 |

[11] |
Siljak, D.: Decentralized control of complex systems. (1991) |

[12] |
Vidyasagar, M.: New directions of research in nonlinear system theory. Proc. IEEE 74, No. 8, 1060-1091 (1986) |

[13] |
Kaszkurewicz, E.; Bhaya, A.: Matrix diagonal stability in systems and computation. (1999) · Zbl 0925.34060 |

[14] |
Horn, R.; Johnson, C.: Topics in matrix analysis. (1991) · Zbl 0729.15001 |

[15] |
Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control syst. Mag. 19, No. 5, 59-70 (1999) |

[16] |
Decarlo, R.; Branicky, M.; Pettersson, S.; Lennartson, B.: Perspectives and results on the stability and stabilisability of hybrid systems. Proc. IEEE 88, No. 7, 1069-1082 (2000) |

[17] |
O. Mason, Switched systems, convex cones and common Lyapunov functions, Ph.D. thesis, Department of Electronic Engineering, National University of Ireland, Maynooth, 2004. |

[18] |
O. Mason, R. Shorten, A conjecture on the existence of common quadratic Lyapunov functions for positive linear systems, in: Proceedings of American Control Conference, 2003. |

[19] |
Y. Mori, T. Mori, Y. Kuroe, On a class of linear constant systems which have a common quadratic Lyapunov function, in: Proceedings of the IEEE Conference on Decision and Control, 1998. |