×

Applications of operator identities to the multiple \(q\)-binomial theorem and \(q\)-Gauss summation theorem. (English) Zbl 1095.05002

Summary: We first give an interesting operator identity. Furthermore, using the \(q\)-exponential operator technique to the multiple \(q\)-binomial theorem and \(q\)-Gauss summation theorem, we obtain some transformation formulae and summation theorems of multiple basic hypergeometric series.

MSC:

05A30 \(q\)-calculus and related topics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G.E Andrews, \(q\); G.E Andrews, \(q\) · Zbl 0594.33001
[2] Askey, R.; Ismail, M. E.H., A generalization og ultraspherical polynomials, (Erdos, P., Studies in Pure Mathematics (1983), Birkhauser: Birkhauser Boston, MA), 55-78 · Zbl 0532.33006
[3] Chen, W. Y.C.; Liu, Z-. G., Parameter augmentation for basic hypergeometric series, II, J. Combin. Theory Ser. A, 80, 175-195 (1997) · Zbl 0901.33009
[4] Chen, W. Y.C.; Liu, Z.-G., Parameter augmentation for basic hypergeometric series, I, (Sagan, B. E.; Stanley, R. P., Mathematical Essays in Honor of Gian-Carlo Rota (1998), Birkauser: Birkauser Basel), 111-129 · Zbl 0901.33008
[5] Gasper, G.; Rahman, M., Basic Hypergeometric Series (1990), Cambridge University Press: Cambridge University Press Cambridge, MA · Zbl 0695.33001
[6] Ismail, M. E.H.; Stanton, D., On the Askey-Wilson and Roger polynomials, Canad. J. Math., 40, 1025-1045 (1988) · Zbl 0649.33005
[7] Ismail, M. E.H.; Stanton, D.; Viennot, G., The combinatorics of \(q\)-Hermite polynomials and the Askey-Wilson integral, European J. Combin., 8, 379-392 (1987) · Zbl 0642.33006
[8] Kalnins, E. G.; Miller, W., \(q\)-series and orthogonal polynomials associated with Barnes’ first lemma, SIAM J. Math. Anal., 19, 1216-1231 (1988) · Zbl 0652.33007
[9] Milne, S. C., Balanced \({}_3\phi_2\) summation theorems forr \(U(n)\) basic hypergeometric series, Adv. Math., 131, 93-187 (1997) · Zbl 0886.33014
[10] Rogers, L. J., On the expansion of some infinite products, Proc. London Math. Soc., 24, 337-352 (1893) · JFM 25.0432.01
[11] Rogers, L. J., Second memoir on the expansion of certain infinite products, Proc. London Math. Soc., 25, 318-343 (1894)
[12] Rogers, L. J., Third memoir on the expansion of certain infinite products, Proc. London Math. Soc., 26, 15-32 (1895) · JFM 26.0289.01
[13] Sears, D. B., Transformations of basic hypergeometric functions of special type, Proc. London Math. Soc., 52, 467-483 (1951) · Zbl 0042.07503
[14] Sears, D. B., On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc., 53, 158-180 (1951) · Zbl 0044.07705
[15] Sears, D. B., Transformations of basic hypergeometric functions of any order, Proc. London Math. Soc., 53, 181-191 (1951) · Zbl 0044.07704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.