×

zbMATH — the first resource for mathematics

Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module. (English) Zbl 1095.17001
Authors’ abstract: We investigate certain singular categories of Harish-Chandra bimodules realized as the category of \({\mathfrak p}\)-presentable modules in the principal block of the Berstein-Gelfand-Gelfand category \({\mathcal O}\). This category is equivalent to the module category of a properly stratified algebra. We describe the socles and endomorphism rings of standard objects in this category. Further, we consider translation and shuffling functors and their action on the standard modules. Finally, we study a graded version of this category; in particular, we give a graded version of the properly stratified structure, and use graded versions of translation functors to categorify a parabolic Hecke module.

MSC:
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
20C08 Hecke algebras and their representations
13E10 Commutative Artinian rings and modules, finite-dimensional algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a \?th root of unity and of semisimple groups in characteristic \?: independence of \?, Astérisque 220 (1994), 321 (English, with English and French summaries). · Zbl 0802.17009
[2] H. H. Andersen and N. Lauritzen, Twisted Verma modules, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 1 – 26. · Zbl 1079.17002
[3] Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177 – 268; ibid. 1 (1974), 269 – 310. · Zbl 0285.16028
[4] Erik Backelin, The Hom-spaces between projective functors, Represent. Theory 5 (2001), 267 – 283. · Zbl 1005.17004
[5] Joseph Bernstein, Trace in categories, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 417 – 423. · Zbl 0747.17007
[6] Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of \?(\?\?\(_{2}\)) via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199 – 241. · Zbl 0981.17001
[7] J. N. Bernstein and S. I. Gel\(^{\prime}\)fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245 – 285. · Zbl 0445.17006
[8] I. N. Bernšteĭn, I. M. Gel\(^{\prime}\)fand, and S. I. Gel\(^{\prime}\)fand, A certain category of \?-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1 – 8 (Russian).
[9] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473 – 527. · Zbl 0864.17006
[10] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4 – 6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. · Zbl 1120.17002
[11] E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85 – 99. · Zbl 0657.18005
[12] David H. Collingwood and Ronald S. Irving, A decomposition theorem for certain self-dual modules in the category \?, Duke Math. J. 58 (1989), no. 1, 89 – 102. · Zbl 0673.17003
[13] Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483 – 506. · Zbl 0656.22007
[14] Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. · Zbl 0867.17001
[15] Vlastimil Dlab, Properly stratified algebras, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 3, 191 – 196 (English, with English and French summaries). · Zbl 0964.16009
[16] Yu. A. Drozd, S. A. Ovsienko, and V. M. Futornyĭ, The Harish-Chandra \?-homomorphism and \?-modules generated by a semiprimitive element, Ukrain. Mat. Zh. 42 (1990), no. 8, 1031 – 1037 (Russian, with Ukrainian summary); English transl., Ukrainian Math. J. 42 (1990), no. 8, 919 – 924 (1991). · Zbl 0717.17010
[17] Thomas J. Enright, On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae, Ann. of Math. (2) 110 (1979), no. 1, 1 – 82. · Zbl 0417.17005
[18] V. Futorny, S. König, and V. Mazorchuk, Categories of induced modules and standardly stratified algebras, Algebr. Represent. Theory 5 (2002), no. 3, 259 – 276. · Zbl 1031.17008
[19] Vyacheslav Futorny, Steffen König, and Volodymyr Mazorchuk, \?-subcategories in \?, Manuscripta Math. 102 (2000), no. 4, 487 – 503. · Zbl 1018.17005
[20] O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 261 – 302. · Zbl 0476.17005
[21] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. · Zbl 0725.20028
[22] Ronald Irving, Shuffled Verma modules and principal series modules over complex semisimple Lie algebras, J. London Math. Soc. (2) 48 (1993), no. 2, 263 – 277. · Zbl 0801.17007
[23] Ronald S. Irving, Projective modules in the category \?_{\?}: self-duality, Trans. Amer. Math. Soc. 291 (1985), no. 2, 701 – 732. · Zbl 0594.17005
[24] Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). · Zbl 0541.17001
[25] O. Khomenko, Categories with projective functors, PhD thesis. Universität Freiburg (Germany), 2004.
[26] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165 – 184. · Zbl 0499.20035
[27] Steffen König and Volodymyr Mazorchuk, Enright’s completions and injectively copresented modules, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2725 – 2743. · Zbl 1007.17004
[28] S. König and V. Mazorchuk, An equivalence of two categories of \?\?(\?,\Bbb C)-modules, Algebr. Represent. Theory 5 (2002), no. 3, 319 – 329. · Zbl 1010.16006
[29] Volodymyr Mazorchuk, Twisted and shuffled filtrations on tilting modules, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), no. 1, 26 – 32 (English, with English and French summaries). · Zbl 1067.17007
[30] Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209 – 223. · Zbl 0725.16011
[31] Jeremy Rickard, Translation functors and equivalences of derived categories for blocks of algebraic groups, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 255 – 264. · Zbl 0829.20023
[32] Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83 – 114. · Zbl 0886.05123
[33] Wolfgang Soergel, Kategorie \?, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421 – 445 (German, with English summary). · Zbl 0747.17008
[34] Wolfgang Soergel, Équivalences de certaines catégories de \?-modules, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 15, 725 – 728 (French, with English summary). · Zbl 0623.17005
[35] C. Stroppel, A generalization of Joseph’s functor and shuffled Harish-Chandra bimodules. in preparation.
[36] C. Stroppel, Categorification of the Temperley-Lieb category, Tangles and cobordisms via projective functors, Preprint Aarhus University (2003). · Zbl 1112.17010
[37] Catharina Stroppel, Category \?: gradings and translation functors, J. Algebra 268 (2003), no. 1, 301 – 326. · Zbl 1040.17002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.