Chang, Jianming; Fang, Mingliang; Zalcman, Lawrence Normality and fixed-points of meromorphic functions. (English) Zbl 1095.30026 Ark. Mat. 43, No. 2, 307-321 (2005). The main result in the paper under review is the following: Let \(\mathcal F\) be a family of meromorphic functions on a domain \(\mathcal D\) in the complex plane \(\mathbb{C}\), and let \(R\) be a rational function with \(\text{deg}\;R\geq3\). If, for any \(f\in\mathcal F\), the composite function \(R(\mathcal F)\) has no fixed point in \(\mathcal D\), then \(\mathcal F\) is normal in \(\mathcal D\). Further, the authors give a result of X. Pang and L. Zalcman in [Ark. Mat. 38, 171–182 (2000; Zbl 1079.30044)] a new and simplified proof concerning normality and shared values. Reviewer: Rauno Aulaskari (Joensuu) Cited in 2 ReviewsCited in 7 Documents MSC: 30D45 Normal functions of one complex variable, normal families 30D30 Meromorphic functions of one complex variable (general theory) Keywords:meromorphic function; normal family; shared value Citations:Zbl 1079.30044 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Essén, M. andWu, S., Fix-points and a normal family of analytic functions,Complex Variables Theory Appl. 37 (1998), 171–178. · Zbl 1054.30524 [2] Fang, M. L. andXu, Y., Normal families of holomorphic functions and shared values,Israel J. Math. 129 (2002), 125–141. · Zbl 1007.30025 · doi:10.1007/BF02773159 [3] Fang, M. L. andYuan W. J., On Rosenbloom’s fixed-point theorem and related results,J. Austral. Math. Soc. 68 (2000), 321–333. · Zbl 0969.30013 · doi:10.1017/S1446788700001415 [4] Fang, M. L. andZalcman, L., Normal families and shared values of meromorphic functions,Ann. Polon. Math. 80 (2003), 133–141. · Zbl 1030.30029 · doi:10.4064/ap80-0-11 [5] Gross, F. andOsgood, C. F., On the fixed points of composite meromorphic functions,J. Math. Anal. Appl. 114 (1986), 490–496. · Zbl 0597.30042 · doi:10.1016/0022-247X(86)90101-0 [6] Hayman, W. K.,Meromorphic Functions, Clarendon Press, Oxford, 1964. [7] Pang, X. C. andZalcman, L., Normality and shared values,Ark. Mat. 38 (2000), 171–182. · Zbl 1079.30044 · doi:10.1007/BF02384496 [8] Pang, X. C. andZalcman, L., Normal families and shared values,Bull. London Math. Soc. 32 (2000), 325–331. · Zbl 1030.30031 · doi:10.1112/S002460939900644X [9] Rosenbloom, P. C., The fix-points of entire functions,Medd. Lunds Univ. Mat. Sem. 1952 (Tome Supplementaire) (1952), 186–192. [10] Schiff, J. L.,Normal Families, Springer, New York, 1993. [11] Schwick, W., Sharing values and normality,Arch. Math. (Basel) 59 (1992), 50–54. · Zbl 0758.30028 [12] Yang, L., Normal families and fix-points of meromorphic functions,Indiana Univ. Math. J. 35 (1986), 179–191. · Zbl 0589.30027 · doi:10.1512/iumj.1986.35.35010 [13] Yang, L., Some recent results and problems in the theory of value distribution, inProc. of the Symposium on Value Distribution Theory in Several Complex Variables (Notre Dame, IN, 1990), Notre Dame Math. Lectures12, pp. 157–171, Univ. of Notre Dame Press, Notre Dame, IN, 1992. [14] Yang, L.,Value Distribution Theory. Translated and revised from the 1982 Chinese original, Springer, Berlin: Science Press, Beijing, 1993. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.