zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient numerical method for singular perturbation problems. (English) Zbl 1095.65068
This paper deals with a numerical solution of singularly perturbed boundary value problems. Two schemes to integrate singularly perturbed system of initial value problems are presented. The first method is a combination ot the classical finite difference scheme and the exponentially fitted difference scheme. The second method is completely of exponential type. Two numerical examples are provided.

65L10Boundary value problems for ODE (numerical methods)
34B05Linear boundary value problems for ODE
34E15Asymptotic singular perturbations, general theory (ODE)
Full Text: DOI
[1] Doolan, E. P.; Miller, J. J. H.; Schilders, W. H. A.: Uniform numerical methods for problems with initial and boundary layers. (1980) · Zbl 0459.65058
[2] Farrell, P. A.; Hegarty, A. F.; Miller, J. J. H.; O’riordan, E.; Shishkin, G. I.: Robust computational techniques for boundary layers. (2000) · Zbl 0964.65083
[3] Henrici, P.: Error propagation for difference methods. (1963) · Zbl 0171.36104
[4] Miller, J. J. H.; O’riordan, E.; Shishkin, G. I.: Fitted numerical methods for singular perturbation problems. (1996)
[5] Morton, K. W.: Numerical solution of convection-diffusion problems. (1996) · Zbl 0861.65070
[6] Natesan, S.; Ramanujam, N.: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers. Appl. math. Comput. 93, 259-275 (1998) · Zbl 0943.65086
[7] Natesan, S.; Ramanujam, N.: ”Shooting method” for the solution of singularly perturbed two-point boundary-value problems having less severe boundary layer. Appl. math. Comput. 133, 623-641 (2002) · Zbl 1035.65081
[8] Natesan, S.; Vigo-Aguiar, J.; Ramanujam, N.: A numerical algorithm for singular perturbation problems exhibiting weak boundary layers. Comput. math. Appl. 45, 469-479 (2003) · Zbl 1036.65065
[9] Roberts, S. M.: A boundary-value technique for singular perturbation problems. J. math. Anal. appl. 87, 489-508 (1979) · Zbl 0481.65048
[10] Roos, H. G.; Stynes, M.; Tobiska, L.: Numerical methods for singularly perturbed differential equations. (1996) · Zbl 0844.65075
[11] Vigo-Aguiar, J.; Ferrándiz, J. M.: A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. anal. 35, No. 4, 1684-1708 (1998) · Zbl 0916.65081
[12] Vigo-Aguiar, J.; Natesan, S.: A parallel boundary-value technique for singularly perturbed two-point boundary-value problems. J. super computing 27, No. 2, 195-206 (2004) · Zbl 1070.65066
[13] Walter, W.: Differential and integral inequalities. (1970) · Zbl 0252.35005