## Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson.(English)Zbl 1096.11024

The main result of this paper reads as follows. Let $$Q\in \mathbb{Z}[x]$$, of degree $$q\geq 1$$, satisfy $$Q(k)\neq 0$$ for each integer $$k\geq 1$$, and define the entire transcendental function $$G$$ by $$G(x):=\sum_{n=0}^\infty x^n/\prod_{k=1}^n Q(k)$$. Then, for any distinct $$\alpha_1,\dots ,\alpha_h\in \mathbb{Q}^\times$$, the $$1+hq$$ numbers $$(\ast): 1,G(\alpha_1),\dots ,G^{(q-1)}(\alpha_1),\dots , G(\alpha_h),\dots ,G^{(q-1)}(\alpha_h)$$ are linearly independent over $$\mathbb{Q}$$. This assertion is a corollary of a slightly more general (but also purely qualitative) result of F. Carlson [Ark. Mat. Astron. Fys. A 25, No. 7, 1–13 (1935; Zbl 0011.39202)]. For the proof, the present author uses the Hilbert-Perron-Skolem method as explained, e.g., by himself and the reviewer [Abh. Math. Sem. Univ. Hamb. 69, 103–122 (1999; Zbl 0961.11022)]. This method requires very delicate divisibility considerations but only rather simple analytic tools. It should be noted that A. I. Galochkin [Mosc. Univ. Math. Bull. 34, 26–31 (1979); translation from Vestn. Mosk. Univ., Ser. I Mat. Mekh. 1979, No. 1, 26–30 (1979; Zbl 0413.10028)] proved very sharp linear independence measures for the numbers $$(\ast)$$ using a different and much more analytic method.

### MSC:

 11J82 Measures of irrationality and of transcendence 11J72 Irrationality; linear independence over a field

### Citations:

Zbl 0011.39202; Zbl 0961.11022; Zbl 0413.10028
Full Text:

### References:

 [1] P. Bundschuh, R. Wallisser, Maße für die lineare Unabhängigkeit von Werten ganz transzendenter Lösungen gewisser Funktionalgleichungen I Bd. 69 (1999) II Bd. 73 (2003). Abh. Math Sem. Univ. Hamburg. · Zbl 1041.11050 [2] F. Carlson, Sur une propriété arithmétique de quelques fonctions entières. Arkiv för Mathematik, Astronomi och Fysik. Bd 25A. N: 07 (1935). · Zbl 0011.39202 [3] R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der höheren Kongruenzen, Abh. Akad. Wiss. Göttingen 23 (1878), 3-37. [4] N.I. Fel’dman, Yu.V. Nesterenko, Transcendental Numbers, Number Theory IV. Encycl. of Math. Sc. 44 (1998), Springer. · Zbl 0885.11004 [5] I. Gerst, J. Brillhart, On the prime divisors of polynomials. Amer. Math. Monthly 78 (1971). · Zbl 0214.30604 [6] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, 2nd ed., Physica, Würzburg, 1965. [7] D.Hilbert, Über die Transcendenz der Zahlen $$e$$ und $$π$$. Math. Ann. 43 (1893), 216-219. [8] A. Hurwitz, Beweis der Transzendenz der Zahl $$e$$. Math. Ann. 43 (1893), 220-221. [9] T. Nagell, Généralisation d’un théorème de Tchebycheff. Journ. de Math.$$(8^e$$ serie), tome IV (1921). · JFM 48.1173.01 [10] O. Perron, Irrationalzahlen. Chelsea, New York, (1951). · Zbl 0029.20303 [11] I. Schur, Über die Existenz unendlich vieler Primzahlen in einigen speziellen arithmetischen Progressionen. S.-B. Berlin. Math. Ges. 11 (1912), 40-50. · JFM 43.0261.02 [12] Th. Skolem, Some theorems on irrationality and linear independence. Skand. Mat. Kongr. 11, Trondheim 1949, 77-98. · Zbl 0048.03304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.