# zbMATH — the first resource for mathematics

A generalization of the cofiniteness problem in local cohomology modules. (English) Zbl 1096.13522
From the paper: $$R$$ denotes a commutative noetherian ring with non-zero identity and $$M$$ is a finitely generated $$R$$-module.
Definition. Let $$\Phi$$ be a system of ideals of $$R$$. The general local cohomology module $$H^j_\Phi(M)$$ is defined to be $$\Phi$$-cofinite if there exists an ideal $$I\in\Phi$$ such that $$\text{Ext}^i_R(R/I, H^j_\Phi(M))$$ is finitely generated for all $$i$$.
Definition. The sequence $$x_1,\dots, x_n$$ of elements of $$R$$ is called a $$d$$-sequence on $$M$$, for each $$i= 0,1,\dots, n-1$$, the equality $$(x_1,\dots, x_i)M:_M x_{i+1} x+k= (x_1,\dots, x_i)M:_M x_k$$ holds for all $$k\geq 1$$ it is an unconditioned strong $$d$$-sequence on $$M$$ if $$x^{\alpha_1}_1,\dots, x^{\alpha_n}_n$$ is a $$d$$-sequence in any order for all positive integers $$\alpha_1,\dots, \alpha_n$$.
The authors prove that if an ideal $$I$$ of $$R$$ is generated by a unconditioned strong $$d$$-sequence on $$M$$ then the locally cohomology module $$H^i_I(M)$$ is $$I$$-cofinite. Furthermore, for any system of ideals $$\Phi$$ of $$R$$, they study the cofiniteness problem in the context of general local cohomology modules.

##### MSC:
 13D45 Local cohomology and commutative rings 13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
Full Text:
##### References:
 [1] Matlis, Pacific J. Math. 8 pp 511– (1958) · Zbl 0084.26601 [2] Peskine, I.H.E.S. 42 pp 323– (1973) [3] DOI: 10.1016/S0022-4049(96)00044-8 · Zbl 0893.13005 [4] DOI: 10.1017/S0305004100071929 · Zbl 0806.13005 [5] Brodmann, Local cohomology–an algebraic introduction with geometric applications 60 (1998) · Zbl 0903.13006 [6] DOI: 10.1090/S0002-9939-00-05328-4 · Zbl 0955.13007 [7] DOI: 10.1007/BF01196355 · Zbl 0601.13007 [8] Bijan-Zadeh, Glasgow Math. J. 21 pp 173– (1980) [9] DOI: 10.1112/jlms/s2-19.3.402 · Zbl 0404.13010 [10] DOI: 10.1007/BF01112819 · Zbl 0112.26604 [11] DOI: 10.4064/cm87-1-8 · Zbl 0963.13014 [12] DOI: 10.1080/00927879908826816 · Zbl 0940.13013 [13] DOI: 10.1080/00927879808826293 · Zbl 0909.13007 [14] DOI: 10.1112/S0024609397004347 · Zbl 0930.13013 [15] DOI: 10.1090/S0002-9939-96-03399-0 · Zbl 0860.13011 [16] DOI: 10.2307/2154297 · Zbl 0785.13005 [17] Nagel, Commutative algebra: Syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) 159 pp 307– (1994) [18] DOI: 10.1017/S0305004100070493 · Zbl 0749.13007 [19] DOI: 10.1016/0001-8708(82)90045-7 · Zbl 0505.13004 [20] DOI: 10.1007/BF01404554 · Zbl 0196.24301 [21] Grothendieck, Cohomologie locale des faiseaux cohérents et théorèmes de Lefshetz locaux et globaux (1969) [22] Grothendieck, Local cohomology notes (1966) [23] Yoshida, Nagoya Math. J. 147 pp 179– (1997) · Zbl 0899.13018 [24] DOI: 10.1017/S0305004100060308 · Zbl 0509.13024 [25] Stuckrad, Buchsbaum rings and applications (1986) [26] Sharp, Mathematika 29 pp 32– (1982) [27] DOI: 10.1002/mana.19780850106 · Zbl 0398.13014 [28] Rotman, An introduction to homological algebra (1979) · Zbl 0441.18018 [29] DOI: 10.1007/BF01244301 · Zbl 0795.13004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.