×

Lifting of a Riemannian flag and Lie flags of the \(n+1\)-dimensional hyperbolic torus. (Relèvement d’un drapeau riemannien et drapeaux de Lie du tore hyperbolique \(n+1\)-dimensionnel.) (French) Zbl 1096.53032

The author shows that any flag of Riemannian foliations on a compact connected orientable Riemannian manifold lifts on the bundle of transverse direct orthonormal frames to a flag of transversally parallelizable foliations. This result permits to obtain a classification of \((n+ 1)\)-dimensional compact orientable Riemannian manifolds for which the dimension of the structural Lie algebra of the flow is equal to \(n\) or \(n-1\).

MSC:

53C40 Global submanifolds
53C12 Foliations (differential geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Alaoui, A. El Kacimi; Nicolau, M., A class of \({C}^{∞ }\) stable foliations, Ergod. Th. and Dynam. Sys., 13, 667-704, (1993) · Zbl 0801.58038
[2] Almeida, R.; Molino, P., Flots riemanniens sur LES 4-variétés compactes, Tôhoku Mathematical Journal, 38, 313-326, (1986) · Zbl 0603.57017
[3] Bossoto, B; Diallo, H, Sur LES drapeaux de feuilletages riemanniens, JP Journal of Geometry and Topology, University of Allahabad, INDIA, 2, 281-288, (2002)
[4] Diallo, H., Sur LES drapeaux de Lie, Afrika Mathematika, 13, 75-86, (2002) · Zbl 1044.57010
[5] Fédida, E., Feuilletages du plan. Feuilletages de Lie, (1973) · Zbl 0218.57014
[6] Molino, P., Géométrie globale des feuilletages riemanniens, Proc. Kon. Nederland Akad Ser. A, 85, 45-76, (1982) · Zbl 0516.57016
[7] Carrière, Y, Flots riemanniens, Structures transverses des feuilletages, Astérisque, 116, 31-52, (1984) · Zbl 0548.58033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.