[1] |
K. Abercromby, Personal Correspondence, NASA Johnson Space Center, April, 2005. |

[2] |
Berman, A.; Plemmons, R.: Nonnegative matrices in the mathematical sciences. SIAM press classics series (1994) · Zbl 0815.15016 |

[3] |
M. Catral, L. Han, M. Neumann, R. Plemmons, Reduced rank nonnegative factorization for symmetric nonnegative matrices, Positivity in Linear Algebra, Linear Algebra Appl. 393 (2004) 107 -- 126 (special issue). · Zbl 1085.15012 |

[4] |
M.-A. Cauquy, M. Roggemann, T. Schultz, Approaches for processing spectral measurements of reflected sunlight for space situational awareness, in: Proc. SPIE Conf. on Defense and Security, Orlando, FL, 2004. |

[5] |
Chang, C. -I.: An information theoretic-based approach to spectral variability, similarity, and discriminability for hyperspectral image analysis. IEEE trans. Inform. theory 46, 1927-1932 (2000) |

[6] |
M.T. Chu, F. Diele, R. Plemmons, S. Ragni, Optimality, computation, and interpretation of nonnegative matrix factorizations, Preprint, submitted for publication. Available from: <http://www.wfu.edu/ plemmons>. |

[7] |
M. Cooper, J. Foote, Summarizing video using nonnegative similarity matrix factorization, in: Proc. IEEE Workshop on Multimedia Signal Processing, St Thomas, US Virgin Islands, 2002. |

[8] |
D. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts? Preprint, Department of Statistics, Stanford University, 2003. |

[9] |
D. Guillamet, B. Schiele, J. Vitria, Analyzing non-negative matrix factorization for image classification, in: 16th International Conference on Pattern Recognition (ICPR’02), vol. 2, Quebec City, Canada, 2002. |

[10] |
D. Guillamet, J. Vitria, Determining a suitable metric when using non-negative matrix factorization, in: 16th International Conference on Pattern Recognition (ICPR’02), vol. 2, Quebec City, QC, Canada, 2002. |

[11] |
P. Hoyer, Non-negative sparse coding, in: Neural Networks for Signal Processing XII (Proc. IEEE Workshop on Neural Networks for Signal Processing), Martigny, Switzerland, 2002. · Zbl 1007.68832 |

[12] |
Hyvärinen, A.; Hoyer, P.: Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural comput. 12, 1705-1720 (2000) |

[13] |
Keshava, N.; Mustard, J.: Spectral unmixing. IEEE signal process. Mag. 8, No. January, 44-57 (2002) |

[14] |
Lee, D.; Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788-791 (1999) |

[15] |
Lee, D.; Seung, H.: Algorithms for non-negative matrix factorization. Adv. neural process. (2000) |

[16] |
W. Liu, J. Yi, Existing and new algorithms for non-negative matrix factorization, Preprint, Computer Sciences Dept., UT Austin, 2003. |

[17] |
K. Luu, C. Matson, J. Snodgrass, M. Giffin, K. Hamada, J. Lambert, Object characterization from spectral data, in: Proc. AMOS Technical Conference, Maui, HI, 2003. |

[18] |
Nagy, J. G.; Palmer, K.; Perrone, L.: Iterative methods for image deblurring: a Matlab object oriented approach. Numer. algorithms 36, No. 1, 73-93 (2004) · Zbl 1048.65039 |

[19] |
J.G. Nagy, Z. Strakos, Enforcing nonnegativity in image reconstruction algorithms, in: D.C. Wilson et al. (Eds.), Mathematical Modeling, Estimation, and Imaging, vol. 4121, 2000, pp. 182 -- 190. |

[20] |
V.P. Pauca, R.J. Plemmons, M. Giffin, K. Hamada, Mining scientific data for non-imaging identification and classification of space objects, in: Proc. AMOS Tech Conf., 2004. |

[21] |
J. Piper, V.P. Pauca, R.J. Plemmons, M. Giffin, Object characterization from spectral data using nonnegative matrix factorization and information theory, in: Proc. AMOS Tech Conf., 2004. |

[22] |
V.P. Pauca, F. Shahnaz, M. Berry, R. Plemmons, Text Mining using non-negative matrix factorizations, in: Proc. SIAM Inter. Conf. on Data Mining, Orlando, April, 2004. Available from: <http://www.wfu.edu/ plemmons>. |

[23] |
Plaza, A.; Martinez, P.; Perez, R.; Plaza, J.: A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE trans. Geosci. remote sensing 42, No. 3, 650-663 (2004) |

[24] |
S. Prasad, T. Torgersen, P. Pauca, R. Plemmons, J. van der Gracht, Restoring images with space variant blur via pupil phase engineering, Optics in Info. Systems, Special Issue on Comp. Imaging, SPIE Int. Tech. Group Newsletter 14(2) (2003) 4 -- 5. Available from: <http://www.wfu.edu/ plemmons>. |

[25] |
F. Shahnaz, M.W. Berry, V.P. Pauca, R.J. Plemmons, Document clustering using nonnegative matrix factorization, J. Inform. Process. Manage., in press. Available from: <http://www.wfu.edu/ plemmons>. · Zbl 1087.68104 |

[26] |
S. Wild, Seeding non-negative matrix factorization with the spherical k-means clustering, M.S. Thesis, University of Colorado, 2002. |