zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. (English) Zbl 1096.65131
Summary: The aim of the present analysis is to apply the Adomian decomposition method for the solution of a time-fractional Navier-Stokes equation in a tube. By using an initial value, the explicit solution of the equation is presented in closed form and then its numerical solution is represented graphically. The present method performs extremely well in terms of efficiency and simplicity.

65R20Integral equations (numerical methods)
35Q30Stokes and Navier-Stokes equations
76D05Navier-Stokes equations (fluid dynamics)
45K05Integro-partial differential equations
45G10Nonsingular nonlinear integral equations
26A33Fractional derivatives and integrals (real functions)
76M25Other numerical methods (fluid mechanics)
Full Text: DOI
[1] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1988) · Zbl 0671.34053
[2] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[3] Shawagfeh, N. T.: Analytical approximate solutions for nonlinear fractional differential equations. Appl. math. Comput. 131, 517-529 (2002) · Zbl 1029.34003
[4] Momani, S.; Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. math. Comput. 162, No. 3, 1351-1365 (2005) · Zbl 1063.65055
[5] Al-Khaled, K.; Momani, S.: An approximate solution for a fractional diffusion-wave equation using the decomposition method. Appl. math. Comput. 165, 473-483 (2005) · Zbl 1071.65135
[6] Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. math. Comput. 170, 1126-1134 (2005) · Zbl 1103.65335
[7] S. Saha Ray, R.K. Bera, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., in press, doi:10.1016/j.amc.2005.04.082. · Zbl 1089.65108
[8] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[9] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[10] El-Shahed, M.; Salem, A.: On the generalized Navier-Stokes equations. Appl. math. Comput. 156, No. 1, 287-293 (2004) · Zbl 1134.76323
[11] AY. Luchko, R. Groneflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.
[12] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[13] Oldham, K. B.; Spanier, J.: The fractional calculus. (1974) · Zbl 0292.26011
[14] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II. J. roy. Astral. soc. 13, 529-539 (1967)
[15] Cherruault, Y.: Convergence of Adomian’s method. Kybernetes 18, 31-38 (1989) · Zbl 0697.65051
[16] Cherruault, Y.; Adomian, G.: Decomposition methods: a new proof of convergence. Math. comput. Modell. 18, 103-106 (1993) · Zbl 0805.65057
[17] Biazar, J.; Babolian, E.; Kember, G.; Nouri, A.; Islam, R.: An alternate algorithm for computing Adomian polynomials in special cases. Appl. math. Comput. 138, 523-529 (2002) · Zbl 1027.65076