zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. (English) Zbl 1096.74042
Summary: Most engineering optimization algorithms are based on numerical linear and nonlinear programming methods that require substantial gradient information, and usually seek to improve the solution in a neighborhood of the starting point. These algorithms, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search (HS) meta-heuristic algorithm-based approach for engineering optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search, so that the derivative information is unnecessary. Various engineering optimization problems, including mathematical function minimization and structural engineering optimization problems, are presented to demonstrate the effectiveness and robustness of HS algorithm.

74P99Optimization in solid mechanics
74S99Numerical methods in solid mechanics
Full Text: DOI
[1] Fogel, L. J.; Owens, A. J.; Walsh, M. J.: Artificial intelligence through simulated evolution. (1966) · Zbl 0148.40701
[2] K. De Jong, Analysis of the behavior of a class of genetic adaptive systems, Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1975.
[3] J.R. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Rep. No. STAN-CS-90-1314, Stanford University, CA, 1990.
[4] Holland, J. H.: Adaptation in natural and artificial systems. (1975) · Zbl 0317.68006
[5] Goldberg, D. E.: Genetic algorithms in search, optimization and machine learning. (1989) · Zbl 0721.68056
[6] Glover, F.: Heuristic for integer programming using surrogate constraints. Decision sci. 8, No. 1, 156-166 (1977)
[7] Kirkpatrick, S.; Gelatt, C.; Vecchi, M.: Optimization by simulated annealing. Science 220, No. 4598, 671-680 (1983) · Zbl 1225.90162
[8] Geem, Z. W.; Kim, J. -H.; Loganathan, G. V.: A new heuristic optimization algorithm: harmony search. Simulation 76, No. 2, 60-68 (2001)
[9] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E.: Equations of state calculations by fast computing machines. J. chem. Phys. 21, 1087-1092 (1953)
[10] Pincus, M.: A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper. res. 18, 1225-1228 (1970) · Zbl 0232.90063
[11] Schwefel, H. -P.: On the evolution of evolutionary computation. Computational intelligence: imitating life, 116-124 (1994)
[12] Kennedy, J.; Eberhat, R. C.: Particle swarm optimization. Proceedings of IEEE international conference on neural networks, no. IV, 1942-1948 (1995)
[13] M. Pelikan, D.E. Goldberg, F.G. Lobo, A survey of optimization by building and using probabilistic models, IlliGAL Rep. No. 99018, University of Illinois Genetic Algorithms Laboratory, Urbana, IL, 1999.
[14] Larranaga, P.; Lozano, J. A.: Estimation of distribution algorithms. (2002)
[15] O. Jiri, Parallel estimation of distribution algorithms, Ph.D. Thesis, BRNO University of Technology, Czech Republic, 2002.
[16] S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning, Technical Report No. CMU-CS-94-163, Carnegie Mellon University, PA, 1994.
[17] Muhlenbein, H.: The equation for response to selection and its use for prediction. Evolution. comput. 5, No. 3, 303-346 (1997)
[18] Harik, G. R.; Lobo, F. G.; Goldburg, D. E.: The compact genetic algorithm. Proceedings of the international conference on evolutionary computation 1998 (ICEC’98), 523-528 (1998)
[19] De Bonet, J. S.; Isbell, C. L.; Viola, P.: MIMC: finding optima by estimating probability densities. Advanced in neural information processing systems, vol. 9 9 (1997)
[20] Baluja, S.; Davies, S.: Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Proceedings of the 14th international conference on machine learning, 30-38 (1997)
[21] Pelikan, M.; Muhlenbein, H.: The bivariate marginal distribution algorithm. Advances in soft computing-engineering design and manufacturing, 521-535 (1999)
[22] G. Harik, Lingkage learning via probabilistic modeling in the ECGA, IlliGAL Rep. No. 99010, University of Illinois Genetic Algorithms Laboratory, Urbana, IL, 1999.
[23] Muhlenbein, H.; Mahnig, T.: Convergence theory and applications of the factorized distribution algorithm. J. comput. Inform. technol. 7, 19-32 (1999)
[24] Pelikan, M.; Goldberg, D. E.; Cantu-Paz, E.: BOA: the Bayesian optimization algorithm. Proceedings of the genetic and evolutionary computation conference (GECCO-99), 525-532 (1999)
[25] Muhlenbein, H.; Mahnig, T.: FDA-A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolution. comput. 7, No. 4, 353-376 (1999)
[26] R. Etxeberria, P. Larranaga, Global optimization with Bayesian networks, in: II Symposium on Artificial Intelligence (CIMAF99), Special Session on Distributions and Evolutionary Optimization, 1999, pp. 332-339.
[27] Dixon, L. C. W.; Szego, G. P.: Towards global optimization. (1975)
[28] Rosenbrock, H. H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3, No. 3, 175-184 (1960)
[29] Goldstein, A. A.; Price, J. F.: On descent from local minima. Math. comput. 25, 569-574 (1971) · Zbl 0223.65020
[30] Eason, E. D.; Fenton, R. G.: A comparison of numerical optimization methods for engineering design. ASME J. Engrg. ind. 96, No. 1, 196-200 (1974)
[31] A.R. Colville, A comparative study of nonlinear programming, Tech. Report No. 320-2949, IBM New York Scientific Center, 1968. · Zbl 0224.90069
[32] Conn, A. R.; Scheinberg, K.; Toint, P. L.: On the convergence of derivative-free methods for unconstrained optimization. Approximation theory and optimization: tributes to M.J.D. Powell (1997) · Zbl 1042.90617
[33] Bracken, J.; Mccormick, G. P.: Selected applications of nonlinear programming. (1968) · Zbl 0194.20502
[34] Homaifar, A.; Lai, S. H. -V.; Qi, X.: Constrained optimization via genetic algorithms. Simulation 62, No. 4, 242-254 (1994)
[35] Fogel, D. B.: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems. Simulation 64, No. 6, 399-406 (1995)
[36] Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. methods appl. Mech. engrg. 186, 311-338 (2000) · Zbl 1028.90533
[37] Michalewicz, Z.; Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evolution. comput. 4, No. 1, 1-13 (1996)
[38] Himmelblau, D. M.: Applied nonlinear programming. (1972) · Zbl 0241.90051
[39] Coello, C. A.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. ind. 41, No. 2, 113-127 (2000)
[40] Shi, Y.; Eberhart, R. C.: A modified particle swarm optimizer. Proceedings of the international congress on evolutionary computation 1998 (ICEC’98), 69-73 (1998)
[41] Michalewicz, Z.: Genetic algorithms, numerical optimization, and constraints. Proceedings of the sixth international conference on genetic algorithms, 151-158 (1995)
[42] Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. mech. Des. ASME 112, 223-229 (1990)
[43] Wu, S. J.; Chow, P. T.: Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Engrg. optim. 24, 137-159 (1995)
[44] Reklaitis, G. V.; Ravindran, A.; Ragsdell, K. M.: Engineering optimization methods and applications. (1983)
[45] Siddall, J. N.: Analytical decision-making in engineering design. (1972)
[46] Ragsdell, K. M.; Phillips, D. T.: Optimal design of a class of welded structures using geometric programming. ASME J. Engrg. ind. Ser. B 98, No. 3, 1021-1025 (1976)
[47] Deb, K.: Optimal design of a welded beam via genetic algorithms. Aiaa j. 29, No. 11 (1991)
[48] Topping, B. H.: Shape optimization of skeletal structures: a review. ASCE J. Struct. engrg. 109, No. 8, 1933-1951 (1983)
[49] Jr., L. A. Schmit; Farshi, B.: Some approximation concepts for structural synthesis. Aiaa j. 12, No. 5, 692-699 (1974)
[50] L.A. Schmit Jr., H. Miura, Approximation concepts for efficient structural synthesis, NASA CR-2552, NASA, Washington, DC, 1976.
[51] Venkayya, V. B.: Design of optimum structures. Comput. struct. 1, No. 1-2, 265-309 (1971)
[52] Dobbs, M. W.; Nelson, R. B.: Application of optimality criteria to automated structural design. Aiaa j. 14, No. 10, 1436-1443 (1976)
[53] P. Rizzi, Optimization of multi-constrained structures based on optimality criteria, in: Conference on AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials, King of Prussia, PA, 1976.
[54] Khan, M. R.; Willmert, K. D.; Thornton, W. A.: An optimality criterion method for large-scale structures. Aiaa j. 17, No. 7, 753-761 (1979)
[55] Imai, K.; Jr., A. L. Schmit: Configuration optimization of trusses. ASCE J. Struct. div. 107, No. ST5, 745-756 (1981)
[56] J.E. Felix, Shape optimization of trusses subjected to strength, displacement, and frequency constraints, Master ’s Thesis, Naval Postgraduate School, 1981.
[57] J.P. Yang, Development of genetic algorithm-based approach for structural optimization, Ph.D. Thesis, Nanyang Technology University, Singapore, 1996.
[58] Soh, C. K.; Yang, J. P.: Fuzzy controlled genetic algorithm search for shape optimization. ASCE J. Comput. civ. Engrg. 10, No. 2, 143-150 (1996)
[59] Rajeev, S.; Krishnamoorthy, C. S.: Genetic algorithm-based methodologies for design optimization of trusses. ASCE J. Struct. engrg. 123, No. 3, 350-358 (1997)
[60] Yang, J. P.; Soh, C. K.: Structural optimization by genetic algorithms with tournament selection. ASCE J. Comput. civ. Engrg. 11, No. 3, 195-200 (1997)
[61] Gill, M. A.: Flood routing by the muskingum method. J. hydrol. 36, 353-363 (1978)
[62] Tung, Y. K.: River flood routing by nonlinear muskingum method. J. hydraul. Engrg. ASCE 111, No. 12, 1147-1460 (1985)
[63] Yoon, J.; Padmanabhan, G.: Parameter estimation of linear and nonlinear muskingum models. J. water resour. Plan. manage. ASCE 119, No. 5, 600-610 (1993)
[64] Mohan, S.: Parameter estimation of nonlinear muskingum models using genetic algorithm. J. hydraul. Engrg. ASCE 123, No. 2, 137-142 (1997)