[1] |
Fogel, L. J.; Owens, A. J.; Walsh, M. J.: Artificial intelligence through simulated evolution. (1966) · Zbl 0148.40701 |

[2] |
K. De Jong, Analysis of the behavior of a class of genetic adaptive systems, Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1975. |

[3] |
J.R. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Rep. No. STAN-CS-90-1314, Stanford University, CA, 1990. |

[4] |
Holland, J. H.: Adaptation in natural and artificial systems. (1975) · Zbl 0317.68006 |

[5] |
Goldberg, D. E.: Genetic algorithms in search, optimization and machine learning. (1989) · Zbl 0721.68056 |

[6] |
Glover, F.: Heuristic for integer programming using surrogate constraints. Decision sci. 8, No. 1, 156-166 (1977) |

[7] |
Kirkpatrick, S.; Gelatt, C.; Vecchi, M.: Optimization by simulated annealing. Science 220, No. 4598, 671-680 (1983) · Zbl 1225.90162 |

[8] |
Geem, Z. W.; Kim, J. -H.; Loganathan, G. V.: A new heuristic optimization algorithm: harmony search. Simulation 76, No. 2, 60-68 (2001) |

[9] |
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E.: Equations of state calculations by fast computing machines. J. chem. Phys. 21, 1087-1092 (1953) |

[10] |
Pincus, M.: A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper. res. 18, 1225-1228 (1970) · Zbl 0232.90063 |

[11] |
Schwefel, H. -P.: On the evolution of evolutionary computation. Computational intelligence: imitating life, 116-124 (1994) |

[12] |
Kennedy, J.; Eberhat, R. C.: Particle swarm optimization. Proceedings of IEEE international conference on neural networks, no. IV, 1942-1948 (1995) |

[13] |
M. Pelikan, D.E. Goldberg, F.G. Lobo, A survey of optimization by building and using probabilistic models, IlliGAL Rep. No. 99018, University of Illinois Genetic Algorithms Laboratory, Urbana, IL, 1999. |

[14] |
Larranaga, P.; Lozano, J. A.: Estimation of distribution algorithms. (2002) |

[15] |
O. Jiri, Parallel estimation of distribution algorithms, Ph.D. Thesis, BRNO University of Technology, Czech Republic, 2002. |

[16] |
S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning, Technical Report No. CMU-CS-94-163, Carnegie Mellon University, PA, 1994. |

[17] |
Muhlenbein, H.: The equation for response to selection and its use for prediction. Evolution. comput. 5, No. 3, 303-346 (1997) |

[18] |
Harik, G. R.; Lobo, F. G.; Goldburg, D. E.: The compact genetic algorithm. Proceedings of the international conference on evolutionary computation 1998 (ICEC’98), 523-528 (1998) |

[19] |
De Bonet, J. S.; Isbell, C. L.; Viola, P.: MIMC: finding optima by estimating probability densities. Advanced in neural information processing systems, vol. 9 9 (1997) |

[20] |
Baluja, S.; Davies, S.: Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Proceedings of the 14th international conference on machine learning, 30-38 (1997) |

[21] |
Pelikan, M.; Muhlenbein, H.: The bivariate marginal distribution algorithm. Advances in soft computing-engineering design and manufacturing, 521-535 (1999) |

[22] |
G. Harik, Lingkage learning via probabilistic modeling in the ECGA, IlliGAL Rep. No. 99010, University of Illinois Genetic Algorithms Laboratory, Urbana, IL, 1999. |

[23] |
Muhlenbein, H.; Mahnig, T.: Convergence theory and applications of the factorized distribution algorithm. J. comput. Inform. technol. 7, 19-32 (1999) |

[24] |
Pelikan, M.; Goldberg, D. E.; Cantu-Paz, E.: BOA: the Bayesian optimization algorithm. Proceedings of the genetic and evolutionary computation conference (GECCO-99), 525-532 (1999) |

[25] |
Muhlenbein, H.; Mahnig, T.: FDA-A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolution. comput. 7, No. 4, 353-376 (1999) |

[26] |
R. Etxeberria, P. Larranaga, Global optimization with Bayesian networks, in: II Symposium on Artificial Intelligence (CIMAF99), Special Session on Distributions and Evolutionary Optimization, 1999, pp. 332-339. |

[27] |
Dixon, L. C. W.; Szego, G. P.: Towards global optimization. (1975) |

[28] |
Rosenbrock, H. H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3, No. 3, 175-184 (1960) |

[29] |
Goldstein, A. A.; Price, J. F.: On descent from local minima. Math. comput. 25, 569-574 (1971) · Zbl 0223.65020 |

[30] |
Eason, E. D.; Fenton, R. G.: A comparison of numerical optimization methods for engineering design. ASME J. Engrg. ind. 96, No. 1, 196-200 (1974) |

[31] |
A.R. Colville, A comparative study of nonlinear programming, Tech. Report No. 320-2949, IBM New York Scientific Center, 1968. · Zbl 0224.90069 |

[32] |
Conn, A. R.; Scheinberg, K.; Toint, P. L.: On the convergence of derivative-free methods for unconstrained optimization. Approximation theory and optimization: tributes to M.J.D. Powell (1997) · Zbl 1042.90617 |

[33] |
Bracken, J.; Mccormick, G. P.: Selected applications of nonlinear programming. (1968) · Zbl 0194.20502 |

[34] |
Homaifar, A.; Lai, S. H. -V.; Qi, X.: Constrained optimization via genetic algorithms. Simulation 62, No. 4, 242-254 (1994) |

[35] |
Fogel, D. B.: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems. Simulation 64, No. 6, 399-406 (1995) |

[36] |
Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. methods appl. Mech. engrg. 186, 311-338 (2000) · Zbl 1028.90533 |

[37] |
Michalewicz, Z.; Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evolution. comput. 4, No. 1, 1-13 (1996) |

[38] |
Himmelblau, D. M.: Applied nonlinear programming. (1972) · Zbl 0241.90051 |

[39] |
Coello, C. A.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. ind. 41, No. 2, 113-127 (2000) |

[40] |
Shi, Y.; Eberhart, R. C.: A modified particle swarm optimizer. Proceedings of the international congress on evolutionary computation 1998 (ICEC’98), 69-73 (1998) |

[41] |
Michalewicz, Z.: Genetic algorithms, numerical optimization, and constraints. Proceedings of the sixth international conference on genetic algorithms, 151-158 (1995) |

[42] |
Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. mech. Des. ASME 112, 223-229 (1990) |

[43] |
Wu, S. J.; Chow, P. T.: Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Engrg. optim. 24, 137-159 (1995) |

[44] |
Reklaitis, G. V.; Ravindran, A.; Ragsdell, K. M.: Engineering optimization methods and applications. (1983) |

[45] |
Siddall, J. N.: Analytical decision-making in engineering design. (1972) |

[46] |
Ragsdell, K. M.; Phillips, D. T.: Optimal design of a class of welded structures using geometric programming. ASME J. Engrg. ind. Ser. B 98, No. 3, 1021-1025 (1976) |

[47] |
Deb, K.: Optimal design of a welded beam via genetic algorithms. Aiaa j. 29, No. 11 (1991) |

[48] |
Topping, B. H.: Shape optimization of skeletal structures: a review. ASCE J. Struct. engrg. 109, No. 8, 1933-1951 (1983) |

[49] |
Jr., L. A. Schmit; Farshi, B.: Some approximation concepts for structural synthesis. Aiaa j. 12, No. 5, 692-699 (1974) |

[50] |
L.A. Schmit Jr., H. Miura, Approximation concepts for efficient structural synthesis, NASA CR-2552, NASA, Washington, DC, 1976. |

[51] |
Venkayya, V. B.: Design of optimum structures. Comput. struct. 1, No. 1-2, 265-309 (1971) |

[52] |
Dobbs, M. W.; Nelson, R. B.: Application of optimality criteria to automated structural design. Aiaa j. 14, No. 10, 1436-1443 (1976) |

[53] |
P. Rizzi, Optimization of multi-constrained structures based on optimality criteria, in: Conference on AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials, King of Prussia, PA, 1976. |

[54] |
Khan, M. R.; Willmert, K. D.; Thornton, W. A.: An optimality criterion method for large-scale structures. Aiaa j. 17, No. 7, 753-761 (1979) |

[55] |
Imai, K.; Jr., A. L. Schmit: Configuration optimization of trusses. ASCE J. Struct. div. 107, No. ST5, 745-756 (1981) |

[56] |
J.E. Felix, Shape optimization of trusses subjected to strength, displacement, and frequency constraints, Master ’s Thesis, Naval Postgraduate School, 1981. |

[57] |
J.P. Yang, Development of genetic algorithm-based approach for structural optimization, Ph.D. Thesis, Nanyang Technology University, Singapore, 1996. |

[58] |
Soh, C. K.; Yang, J. P.: Fuzzy controlled genetic algorithm search for shape optimization. ASCE J. Comput. civ. Engrg. 10, No. 2, 143-150 (1996) |

[59] |
Rajeev, S.; Krishnamoorthy, C. S.: Genetic algorithm-based methodologies for design optimization of trusses. ASCE J. Struct. engrg. 123, No. 3, 350-358 (1997) |

[60] |
Yang, J. P.; Soh, C. K.: Structural optimization by genetic algorithms with tournament selection. ASCE J. Comput. civ. Engrg. 11, No. 3, 195-200 (1997) |

[61] |
Gill, M. A.: Flood routing by the muskingum method. J. hydrol. 36, 353-363 (1978) |

[62] |
Tung, Y. K.: River flood routing by nonlinear muskingum method. J. hydraul. Engrg. ASCE 111, No. 12, 1147-1460 (1985) |

[63] |
Yoon, J.; Padmanabhan, G.: Parameter estimation of linear and nonlinear muskingum models. J. water resour. Plan. manage. ASCE 119, No. 5, 600-610 (1993) |

[64] |
Mohan, S.: Parameter estimation of nonlinear muskingum models using genetic algorithm. J. hydraul. Engrg. ASCE 123, No. 2, 137-142 (1997) |