×

The topological trace formula. (English) Zbl 1097.14017

Summary: The topological trace formula is a computation of the Lefschetz number of a Hecke correspondence \(C\) acting on the weighted cohomology groups, defined in M. Goresky, G. Harder and R. MacPherson [Invent. Math. 116, No. 1–3, 139–213 (1994; Zbl 0849.11047)], of a locally symmetric space \(X\). It expresses this Lefschetz number as a sum of contributions from fixed-point components of \(C\) on the reductive Borel Serre compactification of \(X\). The proof uses the Lefschetz fixed-point formula of M. Goresky and R. MacPherson [Invent. Math. 111, No. 1, 1–33 (1993; Zbl 0786.55001)].

MSC:

14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
11F75 Cohomology of arithmetic groups
22E40 Discrete subgroups of Lie groups
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)

References:

[1] Ar J., Inv. Math. 97 pp 257– (1989)
[2] Ar J, Duke Math. J. 45 pp 911– (1978)
[3] [Ar3] J. Arthur, Characters, harmonic analysis, and an L2-Lefschetz formula, The Mathematical Heritage of Hermann Weyl, Proc. Symp. Pure Math.48, Amer. Math. Soc., Providence, RI, 1998.
[4] [AMRT] A. Ash, D. Mumford, M. Rapoport, and Y.S. Tai, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, Mass., 1975. · Zbl 0334.14007
[5] Ba D., J. Funct. Anal. 53 pp 151– (1983)
[6] Be J., Bonner Math. Schr. 164 pp 1985–
[7] [Bo3] A. Borel, Linear Algebraic Groups (second edition), Grad. Texts Math.126, Springer Verlag, New York 1991.
[8] Bo A, Norm. Sup. 7 pp 235– (1974)
[9] [Bo5] A. Borel, Sheaf theoretic intersection cohomology, Seminar on Intersection Cohomology, Progr. Math. 50, Birkh user, Boston 1984.
[10] Borel J.-P., Comm. Math. Helv. 48 pp 436– (1973)
[11] Indag. Math. pp 399– (1958)
[12] Norm. Sup. 31 pp 181– (1998)
[13] [GeM] S. Gelfand and Y. Manin, Homological Algebra, in: Algebra V, Encycl. Math. Sci. 38, Springer-Verlag, Berlin 1994.
[14] [Gi] C. Gibson, K. Wirthm ller, A. Du Plessis, E. Looijenga, Topological Stability of Smooth Mappings, Lect. Notes Math.552, Springer Verlag, New York 1976.
[15] Geoghegan A., Amer. J. Math 116 pp 397– (1994)
[16] Goresky G., Inv. Math. 116 pp 139– (1994)
[17] Goresky R., Duke Math. J. 89 pp 477– (1997)
[18] [GM1] M. Goresky and R. MacPherson, Lefschetz numbers of Hecke correspondences, in: The Zeta Functions of Picard Modular Surfaces, R. Langlands and D. Ramakrishnan, eds., Publ. C.R.M., Univ. de Montreal (1992), 465-478. · Zbl 0828.14029
[19] Goresky R., Inv. Math. 111 pp 1– (1993)
[20] [GM3] M. Goresky and R. MacPherson, Stratified Morse Theory, Ergeb. Math.14, Springer Verlag, Heidelberg 1989.
[21] Goresky R., Inv. Math. 71 pp 77– (1983)
[22] [GM5] M. Goresky and R. MacPherson, Errata to: Local contribution to the Lefschetz fixed point formula, 2003, http://arxiv.org/math.AT.0301289.
[23] [GI] A. Grothendieck, L. Illusie, Formule de Lefschetz, S.G.A. 5, Cohomologie l-adique et Fonctions L, Lect. Notes Math. 589, Springer Verlag, Heidelberg (1977), 73-137.
[24] [H] G. Harder, Anhang (Letter to Goresky and MacPherson) inEisensteinkohomologie und die Konstruktion gemischter Motive, Lect. Notes Math. 1562, Springer Verlag, Heidelberg 1993.
[25] [I] B. Iverson, Cohomology of Sheaves, Universitext, Springer-Verlag, Heidelberg1986.
[26] [KS] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundl. Math. Wiss.292, Springer Verlag, Heidelberg 1990.
[27] [KN] S. Kobayashi and K. Nomizu, Foundations of Di erential Geometry I, II, John Wiley and Sons, New York1966.
[28] Ko B, Ann. Math. 74 pp 329– (1961)
[29] Ku M., Amer. J. Math 94 pp 486– (1972)
[30] [L1] R. Langlands, Modular forms and l-adic representations, in: Modular Functions of One Variable II, Lect. Notes Math. 349, Springer Verlag, New York 1973.
[31] [L2] R. Langlands, On the functional equation satisfied by Eisenstein series, Lect. Notes Math. 544, Springer Verlag, New York 1976.
[32] Le E, Inv. Math. 121 pp 389– (1995)
[33] Le E, Enseign. Math. 42 pp 201– (1996)
[34] Lo E., Comp. Math. 67 pp 3– (1988)
[35] Mac R, Ann. Math. 100 pp 423– (1974)
[36] [Mat] J. Mather, Notes on Topological Stability, mimeographed notes, Harvard University, 1970.
[37] [Mo] H. Moscovici, Lefschetz formula for Hecke operators, Lie Groups and Representations III, Lect. Notes Math. 1077, Springer Verlag, New York (1984), 321-258.
[38] Ann. Math. 150 pp 1– (1999)
[39] No K, Ann. Math. 59 pp 531– (1954)
[40] No K, Amer. J. Math. 76 pp 33– (1954)
[41] [R] M. Rapoport, On the shape of the contribution of a fixed point on the boundary: the case of Q-rank one, in: The Zeta Functions of Picard Modular Surfaces, R. Langlands and D. Ramakrishnan, eds., Publ. C. R. M., Univ. de Montreal (1992), 465-478.
[42] Sa L, Comm. Math. Helv. 72 pp 167– (1997)
[43] Sa L., Ann. Math 132 pp 1– (1990)
[44] Sat I, Ann. Math. 72 pp 555– (1960)
[45] [Sh] S. Shokranian, Lefschetz numbers on weighted cohomology for twisted groups, preprint, Dept. Matematica, Univ. de Brasilia, 1999.
[46] [Sp] T. A. Springer, Linear Algebraic Groups, Progr. Math.9, Birkh user, Boston, MA, 1981.
[47] St M, Inv. Math. 115 pp 241– (1994)
[48] [Ve] J. L. Verdier, The Lefschetz fixed point formula in etale cohomology, Proceedings of Conference on Local Fields, T. A. Springer, ed., Lect. Notes Math. 192, Springer Verlag, Heidelberg (1971), 165-168.
[49] [Vo] D. Vogan, Representations of Real Reductive Lie Groups, Progr. Math.15, Birkh user, Boston, MA, 1981. · Zbl 0469.22012
[50] [Wa] G. Warner, Harmonic Analysis on Semisimple Lie Groups I, Grundl. Math. Wiss.188, Springer Verlag, Heidelberg 1972.
[51] [We] U. Weselmann, thesis, University of Bonn, 1996, http://www.mathi.uni-heidelberg.de/ weselman/.
[52] Zucker, Inv. Math. 70 pp 169– (1982)
[53] Zucker, Comp. Math. 59 pp 339– (1986)
[54] Zucker, Comm. Math. Helv. 58 pp 312– (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.