zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability in delayed Cohen-Grossberg neural networks: LMI optimization approach. (English) Zbl 1097.34053
The authors investigate stability problems for a class of delayed Cohen-Grossberg neural networks. On the basis of the linear matrix inequality (LMI) optimization approach, and also by combining the Lyapunov-Krasovskii functional method with the Halanay inequality technique, several new sufficient criteria are given for establishing global asymptotic stability and exponential stability of the equilibrium point for this system.

34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
Full Text: DOI
[1] Cohen, M. A.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE trans. Syst. man cybern. 13, 815-821 (1983) · Zbl 0553.92009
[2] Marcus, C. M.; Westervelt, R. M.: Stability of analog neural networks with delays. Phys. rev. A 39, No. 1, 347-359 (1989)
[3] Hopfield, J. J.: Neural networks with graded response have collective computational properties like those of two-stage neurons. Proc. natl. Acad. sci. USA 81, 3088-3092 (1994)
[4] Ye, H.; Michel, A. N.; Wang, K.: Global stability and local stability of Hopfield neural networks with delays. Phys. rev. E 50, No. 2, 4206-4213 (1994)
[5] Driessche, P. V.; Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. math. 58, No. 6, 1878-1890 (1998) · Zbl 0917.34036
[6] Zhang, J.; Jin, X.: Global stability analysis in delayed Hopfield neural network models. Neural netw. 13, 745-753 (2000)
[7] Chen, T.; Amari, S.: New theorems on global convergence of some dynamical systems. Neural netw. 14, 251-255 (2001)
[8] Gopalsamy, K.; He, X. Z.: Delayed-independent stability in bidirectional associative memory networks. IEEE trans. Neural netw. 5, No. 6, 998-1002 (1994)
[9] Cao, J.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE trans. Neural netw. 13, No. 2, 457-463 (2002)
[10] Cao, J.; Liang, J.; Lam, J.: Exponential stability of high-order bidirectional associative memory neural networks with time delays. Phys. D 199, 425-436 (2004) · Zbl 1071.93048
[11] Ye, H.; Michel, A. N.; Wang, K.: Qualitative analysis of Cohen--Grossberg neural networks with multiple delays. Phys. rev. E 51, 2611-2618 (1995)
[12] Wang, L.; Zou, X.: Harmless delays in Cohen--Grossberg neural networks. Phys. D 170, 162-173 (2002) · Zbl 1025.92002
[13] Liao, X.; Chen, G.; Sanchez, E. N.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural netw. 15, 855-866 (2002)
[14] Cao, J.; Zhou, D.: Stability analysis of delayed cellular neural networks. Neural netw. 11, No. 9, 1601-1605 (1998)
[15] Cao, J.: On exponential stability and periodic solutions of cnns with delays. Phys. lett. A 267, 312-318 (2000) · Zbl 1098.82615
[16] Cao, J.: A set of stability criteria for delayed cellular neural networks. IEEE trans. Circuits syst. I 48, No. 4, 494-498 (2001) · Zbl 0994.82066
[17] Cao, J.: Global stability conditions for delayed cnns. IEEE trans. Circuits syst. I 48, No. 11, 1330-1333 (2001) · Zbl 1006.34070
[18] Arik, S.; Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks. IEEE trans. Circuits syst. I 47, 571-574 (2000) · Zbl 0997.90095
[19] Wang, L.; Zou, X.: Exponential stability of Cohen--Grossberg neural networks. Neural netw. 15, 415-422 (2002)
[20] Chen, T.; Rong, L.: Delay-independent stability analysis of Cohen--Grossberg neural networks. Phys. lett. A 317, No. 5--6, 436-449 (2003) · Zbl 1030.92002
[21] Yuan, K.; Cao, J.: An analysis of global asymptotic stability of delayed Cohen--Grossberg neural networks via nonsmooth analysis. IEEE trans. Circuits syst. I 52, No. 9, 1854-1861 (2005)
[22] Cao, J.; Liang, J.: Boundedness and stability for Cohen--Grossberg neural networks with time-varying delays. J. math. Anal. appl. 296, No. 2, 665-685 (2004) · Zbl 1044.92001
[23] Cao, J.: Global exponential stability of Hopfield neural networks. Int. J. Syst. sci. 32, No. 2, 233-236 (2001) · Zbl 1011.93091
[24] Cao, J.; Tao, Q.: Estimation on domain of attraction and convergence rate of Hopfield continuous feedback neural networks. J. comput. Syst. sci. 62, 528-534 (2001) · Zbl 0987.68071
[25] Mohamad, S.; Gopalsamy, K.: Continuous and discrete halanay-type inequalities. Bull. austral. Math. soc. 61, 371-385 (2000) · Zbl 0958.34008
[26] Boyd, S.; Ghaoui, E. L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004