×

\(L^p\) decay estimates for weighted oscillatory integral operators on \(\mathbb R\). (English) Zbl 1097.45007

If \(f\) and \(g\) are real-analytic functions on a neighborhood of the origin in \(\mathbb R^2\) with \(f(0,0)=g(0,0)=0\), \(\chi\) is a smooth function of compact support in this neighborhood of \((0,0)\), the decay rate in \(\lambda\) of \(\| T_{\lambda}\| _{L^p}\) as \(\lambda\to\infty\) is studied, where \[ T_{\lambda}\phi(x)=\int_{\mathbb R}e^{i\lambda f(x, y)}| g(x, y)| ^{\epsilon/2}\chi(x,y)\phi(y)\, dy, \] is the oscillatory integral operator with the phase function \(f\) and weight \(g\). In this paper a region \(\mathcal A\subset[0,1]\times \mathbb R\) is defined. For the necessity, it is shown that if \(T_\lambda\) is bounded in \(L^p(\mathbb R)\) with \(\| T_\lambda\| _{L^p}\leq O(\lambda^{-\alpha})\), then \((1/p,\alpha)\in\mathcal A\). Moreover, if \((1/2,\alpha)\in\mathcal A\), then \(\| T_\lambda\| _{L^2}\leq O(\lambda^ {-\alpha})\), and if \((1/p,\alpha)\in\text{int}(\mathcal A)\), then \(\| T_{\lambda}\| _ {L^p}\leq O(\lambda^{-\alpha})\).

MSC:

45M05 Asymptotics of solutions to integral equations
45P05 Integral operators

References:

[1] Comech, A.: Damping estimates for oscillatory integral operators with finite type singularities. Asymptot. Anal. 18 (1998), no. 3-4, 263-278. · Zbl 0936.35212
[2] Comech, A.: Optimal estimates for Fourier integral operators with one- sided folds. Comm. Partial Differential Equations 24 (1999), 1263-1281. · Zbl 0933.35202 · doi:10.1080/03605309908821465
[3] Greenblatt, M.: A direct resolution of singularities for functions of two variables with applications to Analysis. J. Anal. Math. 92 (2004), 233-257. · Zbl 1102.42005 · doi:10.1007/BF02787763
[4] Greenleaf, A. and Seeger, A.: Fourier integral operators with fold singularities, J. Reine Angew. Math. 455 (1994), 35-56. · Zbl 0799.42008 · doi:10.1515/crll.1994.455.35
[5] Greenleaf, A. and Seeger, A.: Fourier integral operators with cusp singularities. Amer. J. Math 120 (1998), no. 5, 1077-1119. · Zbl 0919.35153 · doi:10.1353/ajm.1998.0036
[6] Greenleaf, A. and Seeger, A.: On oscillatory integral operators with folding canonical relations. Studia Math. 132 (1999), no. 2, 125-139. · Zbl 0922.35194
[7] Greenleaf, A. and Seeger, A.: Oscillatory integral operators with low- order degeneracies. Duke Math. J. 112 (2002), no. 3, 397-420. · Zbl 1033.35164 · doi:10.1215/S0012-9074-02-11231-9
[8] Greenleaf, A. and Seeger, A.: Oscillatory and Fourier integral opera- tors with degenerate canonical relations. In Proceedings of the 6th Interna- tional Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000). 93-141. Publ. Mat., Vol. Extra, 2002. · Zbl 1024.42006 · doi:10.5565/PUBLMAT_Esco02_05
[9] Pan, Y. and Sogge, C. D.: Oscillatory integrals associated to folding canonical relations. Colloq. Math. 60/61 (1990), no. 2, 413-419. · Zbl 0746.58076
[10] Phong, D. H. and Stein, E. M.: Oscillatory integrals with polynomial phases. Invent. Math. 110 (1992), no. 1, 39-62. · Zbl 0829.42014 · doi:10.1007/BF01231323
[11] Phong, D. H. and Stein, E. M.: Models of degenerate Fourier integral operators and Radon transforms. Ann. of Math. (2) 140 (1994), 703-722. · Zbl 0833.43004 · doi:10.2307/2118622
[12] Phong, D. H. and Stein, E. M.: The Newton Polyhedron and oscillatory integral operators. Acta Math. 179 (1997), 105-152. · Zbl 0896.35147 · doi:10.1007/BF02392721
[13] Phong, D. H. and Stein, E. M.: Damped oscillatory integral operators with analytic phases. Adv. Math. 134 (1998), 146-177. · Zbl 0899.47037 · doi:10.1006/aima.1997.1704
[14] Pramanik, M.: Convergence of two-dimensional weighted integrals. Trans. Amer. Math. Soc. 354 (2002), no. 4, 1651-1665. · Zbl 1025.42007 · doi:10.1090/S0002-9947-01-02939-7
[15] Rychkov, V. S.: Sharp L2 bounds for oscillatory integral operators with C\infty phases. Math. Z. 236 (2001), no. 3, 461-489. · Zbl 0998.42002 · doi:10.1007/s002090000187
[16] Seeger, A.: Degenerate Fourier integral operators in the plane. Duke Math. J. 71 (1993), 685-745. · Zbl 0806.35191 · doi:10.1215/S0012-7094-93-07127-X
[17] Seeger, A.: Radon transforms and finite type conditons. J. Amer. Math. Soc. 11 (1998), 869-897. · Zbl 0907.35147 · doi:10.1090/S0894-0347-98-00280-X
[18] Stein, E. M. and Weiss, G.: Introduction to Fourier analysis on Euclid- ean spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton, N.J., 1971.
[19] Yang, C. W.: Lp improving estimates for some classes of Radon transform. Trans. Amer. Math. Soc. 357 (2005), 3887-3903. · Zbl 1074.44002 · doi:10.1090/S0002-9947-05-03807-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.