Nakajima, Tôru Singular points of harmonic maps from 4-dimensional domains into 3-spheres. (English) Zbl 1097.53044 Duke Math. J. 132, No. 3, 531-543 (2006). This paper has two main results:1) Let \(\Omega \) be a bounded domain in \(\mathbb R^4\) and \(u:\Omega \rightarrow S^{3}\) a stable-stationary harmonic map. Then the mapping degree of \(u\) at a singular point is \(\pm 1\).2) Any non-constant stable-stationary tangent map from the ball \(B^{4}\) to \(S^{3}\) is a homogeneous extension of an isometry of \(S^{3}\). Reviewer: R. E. Stong (Charlottesville) Cited in 3 Documents MSC: 53C43 Differential geometric aspects of harmonic maps 58C20 Differentiation theory (Gateaux, Fréchet, etc.) on manifolds Keywords:mapping degree; stable-stationary tangent map; isometry × Cite Format Result Cite Review PDF Full Text: DOI References: [1] F. Bethuel, On the singular set of stationary harmonic maps , Manuscripta Math. 78 (1993), 417–443. · Zbl 0792.53039 · doi:10.1007/BF02599324 [2] H. Brezis, J.-M. Coron, and E. H. Lieb, Harmonic maps with defects , Comm. Math. Phys. 107 (1986), 649–705. · Zbl 0608.58016 · doi:10.1007/BF01205490 [3] J.-M. Coron and R. Gulliver, Minimizing \(p\)-harmonic maps into spheres , J. Reine Angew. Math. 401 (1989), 82–100. · Zbl 0677.58021 · doi:10.1515/crll.1989.401.82 [4] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps , CBMS Reg. Conf. Ser. Math. 50 , Amer. Math. Soc., Providence, 1983. · Zbl 0515.58011 [5] L. C. Evans, Partial regularity for stationary harmonic maps into spheres , Arch. Rational Mech. Anal. 116 (1991), 101–113. · Zbl 0754.58007 · doi:10.1007/BF00375587 [6] R. Hardt, “Singularities of harmonic maps” in Nonlinear Partial Differential Equations (Hangzhou, China, 1992), International Academic, Beijing, 1993, 74–80. [7] M.-C. Hong, On the Hausdorff dimension of the singular set of stable-stationary harmonic maps , Comm. Partial Differential Equations 24 (1999), 1967–1985. · Zbl 0938.35043 · doi:10.1080/03605309908821490 [8] M.-C. Hong and C.-Y. Wang, On the singular set of stable-stationary harmonic maps , Calc. Var. Partial Differential Equations 9 (1999), 141–156. · Zbl 0948.58010 · doi:10.1007/s005260050135 [9] F.-H. Lin, A remark on the map \(x/|x|\) , C. R. Acad. Sci. Paris Sér. I. Math. 305 (1987), 529–531. · Zbl 0652.58022 [10] S. Luckhaus, Partial H\(\Ddoto\)lder continuity for minima of certain energies among maps into a Riemannian manifold , Indiana Univ. Math. J. 37 (1988), 349–367. · Zbl 0641.58012 · doi:10.1512/iumj.1988.37.37017 [11] I. Madsen and J. Tornehave, From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0884.57001 [12] L. Mou, Harmonic maps with prescribed finite singularities , Comm. Partial Differential Equations 14 (1989), 1509–1540. · Zbl 0686.58010 · doi:10.1080/03605308908820665 [13] H. Nakajima, Yau’s trick (in Japanese), S\(\bar\mathrm u\)gaku 41 (1989), 253–258. · Zbl 0736.53041 [14] T. Nakajima, Stability and Singularities of Harmonic Maps into Spheres , Tohoku Math. Publ. 26 , Tohoku Univ. Math. Inst., Sendai, Japan, 2003. · Zbl 1036.53043 [15] T. Okayasu, Regularity of minimizing harmonic maps into \(\mathbb S^4,\mathbb S^5\) and symmetric spaces , Math. Ann. 298 (1994), 193–205. · Zbl 0788.58017 · doi:10.1007/BF01459734 [16] J. Ramanathan, A remark on the energy of harmonic maps between spheres , Rocky Mountain J. Math. 16 (1986), 783–790. · Zbl 0611.58022 · doi:10.1216/RMJ-1986-16-4-783 [17] R. M. Schoen, “Analytic aspects of the harmonic map problem” in Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983) , Math. Sci. Res. Inst. Publ. 2 , Springer, New York, 1984, 321–358. [18] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps , J. Differential Geom. 17 (1982), 307–335. · Zbl 0521.58021 [19] -, Boundary regularity and the Dirichlet problem for harmonic maps , J. Differential Geom. 18 (1983), 253–268. · Zbl 0547.58020 [20] -, Regularity of minimizing harmonic maps into the sphere , Invent. Math. 78 (1984), 89–100. · Zbl 0555.58011 · doi:10.1007/BF01388715 [21] L. Simon, Theorems on regularity and singularity of energy minimizing maps , Lectures Math. ETH Zürich, Birkhäuser, Basel, 1996. · Zbl 0864.58015 [22] R. T. Smith, Harmonic mappings of spheres , Amer. J. Math. 97 (1975), 364–385. JSTOR: · Zbl 0321.57020 · doi:10.2307/2373717 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.