×

zbMATH — the first resource for mathematics

Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. (English) Zbl 1097.76600
Summary: We investigate the performance of the force-coupling method (FCM) for particulate flow at microscales. In this work, we restrict attention to flows where we may neglect fluid inertia (Stokes flows), particle inertia and Brownian motion. The FCM performs well when distances between solid boundaries are sufficiently large, however it does not capture the local effects of viscous lubrication forces for small gap widths. To improve the results, we develop a parameterization of the lubrication forces for inclusion in the model. This is based on exact results for isolated pairs of particles and single particle–wall configurations. The correction is imposed through the addition of a lubrication barrier force on affected particles. The parameterization is tested for several cases, illustrating both the improvements possible and the limitations.

MSC:
76T20 Suspensions
76D07 Stokes and related (Oseen, etc.) flows
76D08 Lubrication theory
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allen, M.P.; Tildesley, D.J., Computer simulation of liquids, (1994), Oxford University Press Oxford · Zbl 0703.68099
[2] Batchelor, G.K., Brownian diffusion of particles with hydrodynamic interaction, J. fluid mech., 74, 1-29, (1976) · Zbl 0346.76073
[3] Brady, J.F.; Bossis, G., Stokesian dynamics, Ann. rev. fluid mech., 20, 111-157, (1988)
[4] Brenner, H., The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. eng. sci., 16, 242-251, (1961)
[5] Canuto, C., Spectral methods in fluid dynamics, (1988), Springer Berlin · Zbl 0675.65117
[6] Climent, E.; Maxey, M.R., Numerical simulations of random suspensions at finite Reynolds numbers, Int. J. multiphase flow, 29, 4, 579-601, (2003) · Zbl 1136.76487
[7] Cooley, M.D.A.; O’Neill, M.E., On the slow rotation of a sphere about a diameter parallel to a nearby plane wall, J. inst. math. appl., 4, 163-173, (1968) · Zbl 0159.58003
[8] Cooley, M.D.A.; O’Neill, M.E., On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere, Mathematika, 16, 37-49, (1969) · Zbl 0174.27703
[9] S.L. Dance, Particle sedimentation in viscous fluids, Ph.D. Thesis, Brown University, 2002
[10] Dratler, D.I.; Schowalter, W.R., Dynamic simulation of suspensions of non-Brownian hard spheres, J. fluid mech., 325, 53-77, (1996) · Zbl 0900.76032
[11] Fogelson, A.L.; Peskin, C.S., A fast numerical method for solving the three-dimensional Stokes equations in the presence of suspended particles, J. comput. phys., 79, 50-69, (1988) · Zbl 0652.76025
[12] Ganatos, P.; Pfeffer, R.; Weinbaum, S., A numerical solution technique for three-dimensional Stokes flows, with application to the motion of strongly interacting spheres in a plane, J. fluid mech., 84, 79-111, (1978) · Zbl 0371.76025
[13] Ganatos, P.; Weinbaum, S.; Pfeffer, R., A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. part 1. perpendicular motion, J. fluid mech., 99, 4, 739-753, (1980) · Zbl 0447.76018
[14] Ganatos, P.; Weinbaum, S.; Pfeffer, R., A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. part 2. parallel motion, J. fluid mech., 99, 4, 755-783, (1980) · Zbl 0447.76019
[15] Girault, V.; Raviart, P.-A., Finite element methods for navier – stokes equations: theory and algorithms, (1986), Springer Berlin
[16] Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D.; Périaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving bodies: application to particulate flow, J. comput. phys., 169, 363-426, (2001) · Zbl 1047.76097
[17] Goldman, A.J.; Cox, R.G.; Brenner, H., Slow viscous motion of a sphere parallel to a plane wall - I motion through a quiescent fluid, Chem. eng. sci., 22, 637-651, (1967)
[18] Gondret, P.; Hallouin, E.; Lance, M.; Petit, L., Experiments on the motion of a solid sphere toward a wall: from viscous dissipation to elastohydrodynamic bouncing, Phys. fluids, 11, 9, 2803-2805, (1999) · Zbl 1149.76384
[19] Hu, H.H., Direct simulation of flows of solid – liquid mixtures, Int. J. multiphase flow, 22, 2, 332-335, (1996) · Zbl 1135.76442
[20] Ichiki, K., Improvement of the Stokesian dynamics method for systems with a finite number of particles, J. fluid mech., 452, 231-262, (2002) · Zbl 1059.76059
[21] Ichiki, K.; Brady, J.F., Many-body effects and matrix inversion in low-Reynolds number hydrodynamics, Phys. fluids, 13, 1, (2001) · Zbl 1184.76241
[22] Ingber, M.S., Dynamic simulation of the hydrodynamic interaction among immersed particles in Stokes flow, Int. J. numer. methods fluids, 10, 791, (1990)
[23] Jeffrey, D.J., Low Reynolds number flow between converging spheres, Mathematika, 29, 58-66, (1982) · Zbl 0479.76040
[24] Jeffrey, D.J.; Onishi, Y., Calculation of the resistance and mobility functions for two unequal rigid spheres in low-re flow, J. fluid mech., 139, 261-290, (1984) · Zbl 0545.76037
[25] Jeffrey, D.J.; Onishi, Y., The forces and couples acting on two nearly touching spheres in low-Reynolds-number flow, Zeit. angew. math. phys., 35, 634-641, (1984) · Zbl 0548.76040
[26] Jeffrey, G.B., On the steady rotation of a solid of revolution in a viscous fluid, Proc. lond. math. soc., 2, 14, 327-338, (1915) · JFM 45.1392.04
[27] Johnson, A.A.; Tezduyar, T.E., Simulation of multiple spheres in a liquid-filled tube, Comput. methods appl. mech. engrg., 351-373, (1996) · Zbl 0895.76046
[28] Karniadakis, G.E.; Sherwin, S.J., Spectral/hp element methods for CFD, (1999), Oxford University Press Oxford · Zbl 0954.76001
[29] Kim, S.; Karrila, S.J., Microhydrodynamics: principles and selected applications, (1991), Butterworth-Heinemann London
[30] Ladd, A.J.C.; Verberg, R., Lattice – boltzmann simulations of particle – fluid suspensions, J. stat. phys., 104, 1191-1251, (2001) · Zbl 1046.76037
[31] D. Liu. 2002, Personal communication
[32] Liu, D.; Maxey, M.R.; Karniadakis, G.E., A fast method for particulate microflows, J. mems, 11, 6, 691-702, (2002)
[33] S. Lomholt, Numerical investigations of macroscopic particle dynamics in microflows, Ph.D. Thesis, Risø National Laboratory, Roskilde, Denmark, 2000
[34] Lomholt, S.; Maxey, M.R., Force coupling method for particulate two-phase flow: Stokes flow, J. comput. phys., 184, 2, 381-405, (2003) · Zbl 1047.76100
[35] Lomholt, S.; Stenum, B.; Maxey, M.R., Experimental verification of the force coupling method for particulate flows, Int. J. multiphase flow, 28, 225-246, (2002) · Zbl 1136.76564
[36] Maday, Y.; Meiron, D.; Patera, A.T.; Rønquist, E.M., Analysis of iterative problems for the steady and unsteady Stokes problem: application to spectral element discretizations, SIAM J. sci. comput., 14, 2, 310-337, (1993) · Zbl 0769.76047
[37] Maxey, M.R.; Patel, B.K., Localized flow representations for particles sedimenting in Stokes flow, Int. J. multiphase flow, 27, 9, 1603-1626, (2001) · Zbl 1137.76676
[38] O’Neill, M.E.; Majumdar, S.R., Asymmetrical slow viscous fluid motions cause by the translation or rotation of two spheres. part I: the determination of exact solutions for any values of the ratio of the radii and separation parameters, Z. angew. math. phys., 21, 164-179, (1970) · Zbl 0201.29402
[39] O’Neill, M.E.; Stewartson, K., On the slow motion of a sphere parallel to a nearby plane wall, J. fluid mech., 27, 705-724, (1967) · Zbl 0147.45302
[40] Pozrikidis, C., A spectral element method for particulate Stokes flow, J. comput. phys., 156, 360-381, (1999) · Zbl 0959.76068
[41] E.M. Rønquist, Optimal spectral element methods for the unsteady three-dimensional incompressible Navier Stokes equations, Ph.D. Thesis, M.I.T., 1988
[42] Russel, W.B.; Saville, D.A.; Schowalter, W.R., Colloidal dispersions, (1989), Cambridge University Press Cambridge
[43] Sangani, A.S.; Mo, G., An O(N) algorithm for Stokes and Laplace interactions of particles, Phys. fluids, 8, 8, (1996) · Zbl 1027.76627
[44] Sierou, A.; Brady, J.F., Accelerated Stokesian dynamics simulations, J. fluid mech., 448, 115-146, (2001) · Zbl 1045.76034
[45] Stimson, M.; Jeffery, G.B., The motion of two spheres in a viscous fluid, Proc. R. soc. ser. A, 111, 757, 110-116, (1926) · JFM 52.0865.02
[46] Sulsky, D.; Brackbill, J.U., A numerical method for suspension flow, J. comput. phys., 96, 339-368, (1991) · Zbl 0727.76082
[47] Zeng, S.; Kerns, E.T.; Davis, R.H., The nature of particle contacts in sedimentation, Phys. fluids, 8, 6, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.