Barnich, G.; Brandt, F.; Henneaux, M. Local BRST cohomology in gauge theories. (English) Zbl 1097.81571 Phys. Rep. 338, No. 5, 439-569 (2000). The general solution of the anomaly consistency condition (Wess-Zumino equation) has been found recently for Yang-Mills gauge theory. The general form of the counterterms arising in the renormalization of gauge-invariant operators (Kluberg-Stern and Zuber conjecture) and in gauge theories of the Yang-Mills type with non-power counting renormalizable couplings has also been worked out in any number of space-time dimensions. This Physics Report is devoted to reviewing in a self-contained manner these results and their proofs. This involves computing cohomology groups of the differential introduced by Becchi, Rouet, Stora and Tyutin, with the sources of the BRST variations of the fields (“antifields”) included in the problem. Applications of this computation to other physical questions (classical deformations of the action, conservation laws) are also considered. The general algebraic techniques developed in the Report can be applied to other gauge theories, for which relevant references are given. Cited in 161 Documents MSC: 81T13 Yang-Mills and other gauge theories in quantum field theory 81T70 Quantization in field theory; cohomological methods PDF BibTeX XML Cite \textit{G. Barnich} et al., Phys. Rep. 338, No. 5, 439--569 (2000; Zbl 1097.81571) Full Text: DOI arXiv References: [2] Alvarez-Gaumé, L.; Witten, E., Gravitational anomalies, Nucl. Phys. B, 234, 269 (1984) [3] Anco, S. C., New spin-one gauge theory in three dimensions, J. Math. Phys., 36, 6553 (1995) · Zbl 0845.58065 [4] Anco, S. C., Novel generalization of three-dimensional Yang-Mills theory, J. Math. Phys., 38, 3399 (1997) · Zbl 0893.53031 [5] Anderson, I. M.; Duchamp, T., On the existence of global variational principles, Am. J. Math., 102, 781 (1980) · Zbl 0454.58021 [6] Anderson, I. M., Introduction to the variational bicomplex, Contemp. Math., 132, 51 (1992) · Zbl 0772.58013 [7] Anselmi, D., Removal of divergences with the Batalin-Vilkovisky formalism, Class. Quant. Grav., 11, 2181 (1994) · Zbl 0805.58068 [9] Arnowitt, R.; Deser, S., Interaction between gauge vector fields, Nucl. Phys., 49, 133 (1963) [13] Bandelloni, G., Yang-Mills cohomology in four-dimensions, J. Math. Phys., 27, 2551 (1986) · Zbl 0599.55005 [14] Bandelloni, G., Nonpolynomial Yang-Mills Local Cohomology, J. Math. Phys., 28, 2775 (1987) · Zbl 0635.55010 [15] Bandelloni, G.; Lazzarini, S., Diffeomorphism cohomology in Beltrami parametrization, J. Math. Phys., 34, 5413 (1993) · Zbl 0884.32016 [17] Bardeen, W. A., Anomalous ward identities in spinor field theories, Phys. Rev., 184, 1848 (1969) [18] Bardeen, W. A.; Zumino, B., Consistent and covariant anomalies in gauge and gravitational theories, Nucl. Phys. B, 244, 421 (1984) [28] Batalin, I. A.; Vilkovisky, G. A., Gauge algebra and quantization, Phys. Lett., 102 B, 27*** (1981) [29] Batalin, I. A.; Vilkovisky, G. A., Feynman rules for reducible gauge theories, Phys. Lett. B, 120, 166 (1983) [30] Batalin, I. A.; Vilkovisky, G. A., Quantization of gauge theories with linearly dependent generators, Phys. Rev. D, 28, 2567* (1983) [31] Batalin, I. A.; Fradkin, E. S., A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett., 122 B, 157 (1983) · Zbl 0967.81508 [32] Batalin, I. A.; Vilkovisky, G. A., Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B, 234, 106 (1984) [34] Batalin, I. A.; Lavrov, P. M.; Tyutin, I. V., Remarks on the Sp(2) covariant lagrangian quantization of gauge theories, J. Math. Phys., 32, 2513 (1991) · Zbl 0825.58063 [38] Baulieu, L.; Thierry-Mieg, J., Algebraic structure of quantum gravity and the classification of the gravitational anomalies, Phys. Lett. B, 145, 53 (1984) [40] Baulieu, L., Anomalies and gauge symmetry, Nucl. Phys. B, 241, 557 (1984) [41] Baulieu, L., Perturbative gauge theories, Phys. Rep., 129, 1 (1985) [42] Baulieu, L.; Becchi, C.; Stora, R., On the covariant quantization of the free bosonic string, Phys. Lett. B, 180, 55 (1986) [43] Baulieu, L.; Bellon, M.; Grimm, R., BRS symmetry of supergravity in superspace and its projection to component formalism, Nucl. Phys. B, 294, 279 (1987) [44] Baulieu, L.; Bellon, M., Beltrami parametrization and string theory, Phys. Lett. B, 196, 142 (1987) [45] Becchi, C.; Rouet, A.; Stora, R., The Abelian Higgs-Kibble model, unitarity of the S operator, Phys. Lett. B, 52, 344 (1974) [46] Becchi, C.; Rouet, A.; Stora, R., Renormalization of the Abelian Higgs-Kibble model, Commun. Math. Phys., 42, 127 (1975) [49] Becchi, C., On the covariant quantization of the free string: the conformal structure, Nucl. Phys. B, 304, 513 (1988) [54] Bonneau, G., Some fundamental but elementary facts on renormalization and regularization: a critical review of the eighties, Int. J. Mod. Phys. A, 5, 3831 (1990) [56] Bonora, L.; Cotta-Ramusino, P.; Reina, C., Conformal anomaly and cohomology, Phys. Lett. B, 126, 305 (1983) [57] Bonora, L.; Pasti, P.; Tonin, M., The anomaly structure of theories with external gravity, J. Math. Phys., 27, 2259 (1986) · Zbl 0612.53058 [58] Bonora, L.; Pasti, P.; Bregola, M., Weyl Cocycles, Class. Quant. Grav., 3, 635 (1986) · Zbl 0615.58046 [59] Bonora, L.; Pasti, P.; Tonin, M., The chiral anomaly in supersymmetric gauge theories coupled to supergravity, Phys. Lett. B, 167, 191 (1986) [60] Bourbaki, N., Groupes et Algèbres de Lie I (1960), Hermann: Hermann Paris · Zbl 0199.35203 [61] Brandt, F.; Dragon, N.; Kreuzer, M., All consistent Yang-Mills Anomalies, Phys. Lett. B, 231, 263 (1989) [62] Brandt, F.; Dragon, N.; Kreuzer, M., Completeness and nontriviality of the solutions of the consistency conditions, Nucl. Phys. B, 332, 224 (1990) [63] Brandt, F.; Dragon, N.; Kreuzer, M., Lie algebra cohomology, Nucl. Phys. B, 332, 250 (1990) [64] Brandt, F.; Dragon, N.; Kreuzer, M., The gravitational anomalies, Nucl. Phys. B, 340, 187 (1990) [71] Browning, A. D.; McMullan, D., The Batalin, Fradkin, and Vilkovisky formalism for higher order theories, J. Math. Phys., 28, 438 (1987) · Zbl 0625.58034 [72] Bryant, R. L.; Griffiths, P. A., Characteristic cohomology of differential systems I: general theory, J. Am. Math. Soc., 8, 507 (1995) · Zbl 0845.58004 [74] Capper, D. M.; Duff, M. J., Trace anomalies in dimensional regularization, Nuovo Cim., 23 A, 173 (1974) [76] Chevalley, C.; Eilenberg, S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63, 85 (1948) · Zbl 0031.24803 [79] Deser, S.; Duff, M. J.; Isham, C. J., Nonlocal conformal anomalies, Nucl. Phys., B 111, 45 (1976) · Zbl 0967.81529 [80] Deser, S.; Jackiw, R.; Templeton, S., Three-dimensional massive gauge theories, Phys. Rev. Lett., 48, 975 (1982) [82] De Wilde, M., On the local chevalley cohomology of the dynamical lie algebra of a symplectic manifold, Lett. Math. Phys., 5, 351 (1981) · Zbl 0476.58012 [84] DeWitt, B. S., Quantum theory of gravity II, the manifestly covariant theory, Phys. Rev., 162, 1195 (1967) · Zbl 0161.46501 [85] Dickey, L. A., On exactness of the variational bicomplex, Contemp. Math., 132, 307 (1992) · Zbl 0771.58043 [86] Dixon, J. A.; Taylor, J. C., Renormalization of Wilson operators in gauge theories, Nucl. Phys., B 78, 552 (1974) [90] Deans, W. S.; Dixon, J. A., Theory of gauge invariant operators: their renormalization and S matrix elements, Phys. Rev., D 18, 1113 (1978) [91] Dixon, J.; Ramon Medrano, M., Anomalies of higher-dimension composite fields, Phys. Rev., D 22, 429 (1980) [93] Dragon, N., Regular gravitational Lagrangians, Phys. Lett., B 276, 31 (1992) [96] Dubois-Violette, M.; Talon, M.; Viallet, C. M., New results on BRS cohomology in gauge theory, Phys. Lett., 158 B, 231 (1985) · Zbl 0604.58055 [98] Dubois-Violette, M.; Talon, M.; Viallet, C. M., Anomalous terms in gauge theory: relevance of the structure group, Ann. Inst. Henri Poincaré Phys. Theor., 44, 103 (1986) · Zbl 0604.58057 [99] Dubois-Violette, M., Systèmes dynamiques contraints: l’approche homologique, Ann. Inst. Fourier, 37, 45 (1987) · Zbl 0635.58007 [100] Dubois-Violette, M.; Henneaux, M.; Talon, M.; Viallet, C., Some results on local cohomologies in field theory, Phys. Lett., B 267, 81 (1991) [102] Faddeev, L. D.; Popov, V. N., Feynman diagrams for the Yang-Mills field, Phys. Lett., B 25, 29 (1967) [104] Feynman, R. P., Quantum theory of gravitation, Acta Phys. Polon., 24, 697 (1963) [105] Fisch, J.; Henneaux, M.; Stasheff, J.; Teitelboim, C., Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts, Commun. Math. Phys., 120, 379 (1989) · Zbl 0685.58054 [106] Fisch, J. M.L.; Henneaux, M., Homological perturbation theory and the algebraic structure of the antifield – antibracket formalism for gauge theories, Commun. Math. Phys., 128, 627 (1990) · Zbl 0692.58045 [107] Fradkin, E. S.; Vilkovisky, G. A., Quantization of relativistic systems with constraints, Phys. Lett., B 55, 224 (1975) · Zbl 0967.81532 [108] Fradkin, E. S.; Vasilev, M. A., Hamiltonian formalism, quantization and S matrix for supergravity, Phys. Lett., B 72, 70 (1977) · Zbl 0967.81505 [110] Fradkin, E. S.; Fradkina, T. E., Quantization of relativistic systems with boson and fermion first and second class constraints, Phys. Lett., 72 B, 343 (1978) [111] Freedman, D. Z.; Townsend, P. K., Antisymmetric tensor gauge theories and nonlinear sigma models, Nucl. Phys., B 177, 282 (1981) · Zbl 0983.81513 [114] Gel’fand, I. M.; Dorfman, I. Ya., Hamiltonian operators and associated algebraic structures, Funct. Anal. Appl., 13, 174 (1979) · Zbl 0428.58009 [115] Georgi, H., Thoughts on effective field theory, Nucl. Phys. Proc. Suppl., 29 BC, 1 (1992) [117] Gomis, J.; Parı́s, J., Perturbation theory and locality in the field – antifield formalism, J. Math. Phys., 34, 2132 (1993) · Zbl 0823.58037 [120] Greub, W.; Halperin, S.; Vanstone, R., (Eilenberg, S.; Bass, H., Connections, Curvature and Cohomology, Vol. III: Cohomology of Principal Bundles and Homogeneous Spaces, Pure and Applied Mathematics. Connections, Curvature and Cohomology, Vol. III: Cohomology of Principal Bundles and Homogeneous Spaces, Pure and Applied Mathematics, (A Series of Monographs and Textbooks), Vol. 47 (1976), Academic Press: Academic Press New York) · Zbl 0372.57001 [123] Gugenheim, V. K.A. M.; May, J. P., On the theory and applications of torsion products, Mem. AMS, 142 (1974) · Zbl 0292.55019 [124] Gugenheim, V. K.A. M., On a perturbation theory for the homology of a loop space, J. Pure Appl. Alg., 25, 197 (1982) · Zbl 0487.55003 [125] Gugenheim, V. K.A. M.; Stasheff, J. D., On perturbations and \(A_∞\)-structures, Bull. Soc. Math. Belgique, 38, 237 (1986) · Zbl 0639.55008 [126] Gugenheim, V. K.A. M.; Lambe, L., Applications of perturbation theory to differential homological algebra, Ill. J. Math., 33, 556 (1989) · Zbl 0661.55018 [127] Gugenheim, V. K.A. M.; Lambe, L.; Stasheff, J. D., Applications of perturbation theory to differential homological algebra II, Ill. J. Math., 34, 485 (1990) · Zbl 0684.55006 [129] Henneaux, M., Hamiltonian form of the path integral for theories with a gauge freedom, Phys. Rep., 126, 1 (1985) [130] Henneaux, M.; Teitelboim, C., BRST cohomology in classical mechanics, Commun. Math. Phys., 115, 213 (1988) · Zbl 0649.58050 [131] Henneaux, M., Lectures on the antifield - BRST formalism for gauge theories, Lectures given at 20th GIFT Int. Seminar on Theoretical Physics, Jaca, Spain, Jun 5-9, 1989, and at CECS, Santiago, Chile, June/July 1989, Nucl. Phys. B (Proc. Suppl.), A 18, 47 (1990) [132] Henneaux, M., Space-time locality of the BRST formalism, Commun. Math. Phys., 140, 1 (1991) · Zbl 0734.53067 [143] Hirsch, G., Sur les groups d’homologie des espaces fibrés, Bull. Soc. Math. Belgique, 6, 79 (1953) · Zbl 0058.38903 [144] ’t Hooft, G., Renormalization of massless Yang-Mills fields, Nucl. Phys., B 33, 173 (1971) [145] ’t Hooft, G., Renormalizable lagrangians for massive Yang-Mills fields, Nucl. Phys., B 35, 167 (1971) [146] ’t Hooft, G.; Veltman, M., Regularization and renormalization of gauge fields, Nucl. Phys., B 44, 189 (1972) [147] ’t Hooft, G.; Veltman, M., Combinatorics of gauge fields, Nucl. Phys., B 50, 318 (1972) [153] Kallosh, R. E., Modified Feynman rules in supergravity, Nucl. Phys., B 141, 141 (1978) [155] Kluberg-Stern, H.; Zuber, J. B., Ward identities and some clues to the renormalization of gauge invariant operators, Phys. Rev., D 12, 467 (1975) [156] Kluberg-Stern, H.; Zuber, J. B., Renormalization of Nonabelian gauge theories in a background field gauge, 1, green functions, Phys. Rev., D 12, 482 (1975) [161] Koszul, J.-L., Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France, 78, 65-127 (1950) · Zbl 0039.02901 [162] Lam, Y. P., Perturbation Lagrangian theory for scalar fields: Ward-Takahasi identity and current algebra, Phys. Rev., D 6, 2145 (1972) [163] Lam, Y. P., Equivalence theorem on Bogoliubov-Parasiuk-Hepp-Zimmermann renormalized lagrangian field theories, Phys. Rev., D 7, 2943 (1973) [164] Lambe, L.; Stasheff, J. D., Applications of perturbation theory to iterated fibrations, Manus. Math., 58, 363 (1987) · Zbl 0632.55011 [165] Langouche, F.; Schücker, T.; Stora, R., Gravitational anomalies of the Adler-Bardeen type, Phys. Lett., B 145, 342 (1984) [166] Lavrov, P. M.; Tyutin, I. V., Effective action in general gauge theories, Sov. J. Nucl. Phys., 41, 1049 (1985) [167] Lee, B. W.; Zinn-Justin, J., Spontaneously broken gauge symmetries. I. Preliminaries, Phys. Rev., D 5, 3121 (1972) [168] Lee, B. W.; Zinn-Justin, J., Spontaneously broken gauge symmetries. II. Perturbation theory and renormalization, Phys. Rev., D 5, 3137 (1972) [169] Lee, B. W.; Zinn-Justin, J., Spontaneously broken gauge symmetries. III. Equivalence, Phys. Rev., D 5, 3155 (1972) [170] Lee, B. W.; Zinn-Justin, J., Spontaneously broken gauge symmetries. IV. General gauge formulation, Phys. Rev., D 7, 1049 (1973) [171] Lowenstein, J. H., Differential vertex operations in lagrangian field theory, Commun. Math. Phys., 24, 1 (1971) · Zbl 0221.35008 [172] Lüscher, M., Topology and the axial anomaly in abelian lattice gauge theories, Nucl. Phys., B 538, 515 (1999) · Zbl 0948.81613 [173] Mañes, J.; Stora, R.; Zumino, B., Algebraic study of chiral anomalies, Commun. Math. Phys., 102, 157 (1985) · Zbl 0573.53054 [175] McMullan, D., Yang-Mills theory and the Batalin-Fradkin-Vilkovisky formalism, J. Math. Phys., 28, 428 (1987) · Zbl 0615.58035 [176] Misner, C. W.; Wheeler, J. A., Classical physics as geometry: gravitation, electromagnetism, unquantized charge and mass as properties of curved empty space, Ann. Phys. (NY), 2, 525 (1957) · Zbl 0078.19106 [177] Olver, P. J., Applications of Lie Groups to Differential Equations (1986), Springer: Springer New York · Zbl 0656.58039 [178] Zumino, B., Chiral anomalies and differential geometry, (DeWitt, B. S.; Stora, R., Lectures given at Les Houches Summer School on Theoretical Physics, Les Houches, France, August 8-September 2, 1983, published in Relativity, Groups and Topology II (1984), North-Holland: North-Holland Amsterdam) · Zbl 0595.53069 [180] Piguet, O.; Rouet, A., Symmetries in perturbative quantum field theory, Phys. Rep., 76, 1 (1981) [185] Saunders, D. J., The Geometry of Jet Bundles (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0665.58002 [186] Schücker, T., The cohomological proof of Stora’s solutions, Commun. Math. Phys., 109, 167 (1987) · Zbl 0644.58035 [190] Sterman, G.; Townsend, P. K.; van Nieuwenhuizen, P., Unitarity, ward identities, and new quantization rules of supergravity, Phys. Rev., D 17, 1501 (1978) [193] Sullivan, D., Infinitesimal computations in topology, Pub. Math. IHES, 47, 269 (1977) · Zbl 0374.57002 [194] Takens, F., A global version of the inverse problem to the calculus of variations, J. Differential Geometry, 14, 543 (1979) · Zbl 0463.58015 [200] Thierry-Mieg, J., Classification of the Yang-Mills anomalies in even and odd dimension, Phys. Lett., B 147, 430 (1984) [201] Tonin, M., Dimensional regularization and anomalies in chiral gauge theories, Nucl. Phys. Proc. Suppl., 29 BC, 137 (1992) [206] Tsujishita, T., On variational bicomplexes associated to differential equations, Osaka J. Math., 19, 311 (1982) · Zbl 0524.58041 [210] Unruh, W. G., Excluded possibilities of geometrodynamical analog to electric charge, Gen. Relativ. Gravit., 2, 27 (1971) [213] Vinogradov, A. M., On the algebra-geometric foundations of Lagrangian field theory, Sov. Math. Dokl., 18, 1200 (1977) · Zbl 0403.58005 [214] Vinogradov, A. M., A spectral sequence associated with a nonlinear differential equation and algebra-geometric foundations of Lagrangian field theory with constraints, Sov. Math. Dokl., 19, 144 (1978) · Zbl 0406.58015 [215] Vinogradov, A. M., The \(C\)-spectral sequence, Lagrangian formalism, and conservation laws, I, the linear theory. II. The non linear theory, J. Math. Anal. Appl., 100, 1 (1984) · Zbl 0548.58014 [218] Voronov, B. L.; Lavrov, P. M.; Tyutin, I. V., Canonical transformations and the gauge dependence in general gauge theories, Sov. J. Nucl. Phys., 36, 292 (1982) · Zbl 0588.53079 [219] Wald, R. M., Spin-two fields and general covariance, Phys. Rev., D 33, 3613 (1986) [220] Wald, R. M., On identically closed forms locally constructed from a field, J. Math. Phys., 31, 2378 (1990) · Zbl 0728.53064 [221] Weinberg, S., Phenomenological lagrangians, Physica, 96 A, 327 (1979) [227] Witten, E., A note on the antibracket formalism, Mod. Phys. Lett., A 5, 487 (1990) · Zbl 1020.81931 [228] Yang, C. N.; Mills, R. L., Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev., 96, 191 (1954) · Zbl 1378.81075 [229] Želobenko, D. P., Compact Lie Groups and their Representations. Compact Lie Groups and their Representations, Translations of Mathematical Monographs, Vol. 40 (1973), American Mathematical Society, Providence: American Mathematical Society, Providence RI · Zbl 0272.22006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.