zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conformal four point functions and the operator product expansion. (English) Zbl 1097.81734
Summary: Various aspects of the four point function for scalar fields in conformally invariant theories are analysed. This depends on an arbitrary function of two conformal invariants $u,v$. A recurrence relation for the function corresponding to the contribution of an arbitrary spin field in the operator product expansion to the four point function is derived. This is solved explicitly in two and four dimensions in terms of ordinary hypergeometric functions of variables $z,x$ which are simply related to $u,v$. The operator product expansion analysis is applied to the explicit expressions for the four point function found for free scalar, fermion and vector field theories in four dimensions. The results for four point functions obtained by using the AdS/CFT correspondence are also analysed in terms of functions related to those appearing in the operator product discussion.

81T40Two-dimensional field theories, conformal field theories, etc.
33C90Applications of hypergeometric functions
81R10Infinite-dimensional groups and algebras motivated by physics
Full Text: DOI
[1] Ferrara, S.; Grillo, A. F.; Gatto, R.; Parisi, G.: Nuovo cimento A. 19, 667 (1974)
[2] Dobrev, V. K.; Petkova, V. B.; Petrova, S. G.; Todorov, I. T.: Phys. rev. D. 13, 887 (1976)
[3] Lang, K.; Rühl, W.: Nucl. phys. B. 400, 597 (1993)
[4] Herzog, C. P.: Jhep. 0102, 038 (2001)
[5] Arutyunov, G.; Frolov, S.; Petkou, A. C.: Nucl. phys. B. 586, 547 (2000)
[6] Dolan, F. A.; Osborn, H.: Implications of N=1 superconformal symmetry for chiral fields. Nucl. phys. B 593, 599 (2001) · Zbl 0971.81550
[7] D’eramo, M.; Parisi, G.; Peliti, L.: Lett. nuovo cimento. 2, 878 (1971)
[8] Gradshteyn, I. S.; Ryzhik, I. M.: Tables of integrals, series, and products. (1994) · Zbl 0918.65002
[9] Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B.: Nucl. phys. B. 241, 333 (1984)
[10] Osborn, H.; Petkou, A.: Ann. phys. (N.Y.). 231, 311 (1994)
[11] D’hoker, E.; Freedman, D. Z.: Nucl. phys. B. 544, 612 (1999)
[12] D’hoker, E.; Freedman, D. Z.; Rastelli, L.: Nucl. phys. B. 562, 395 (1999)
[13] D’hoker, E.; Freedman, D. Z.; Mathur, S. D.; Matsusis, A.; Rastelli, L.: Nucl. phys. B. 562, 353 (1999)
[14] Liu, H.; Tseytlin, A. A.: Phys. rev. D. 59, 086002 (1999)
[15] Liu, H.: Phys. rev. D. 60, 106005 (1999)
[16] Sanjay, S.: Mod. phys. Lett. A. 14, 1413 (1999)
[17] Brodie, J. H.; Gutperle, M.: Phys. lett. B. 445, 296 (1999)
[18] Hoffmann, L. C.; Petkou, A. C.; Rühl, W.: Adv. theor. Math. phys.. 4 (2000)
[19] Witten, E.: Adv. theor. Math. phys.. 2, 253 (1998)
[20] Symanzik, K.: Lett. nuovo cimento. 3, 734 (1972)
[21] Hoffmann, L.; Mesref, L.; Rühl, W.: Nucl. phys. B. 589, 337 (2000)
[22] Eden, B.; Petkou, A. C.; Schubert, C.; Sokatchev, E.:
[23] D’hoker, E.; Mathur, S. D.; Matsusis, A.; Rastelli, L.: Nucl. phys. B. 589, 38 (2000)
[24] Lang, K.; Rühl, W.: Nucl. phys. B. 402, 573 (1993)
[25] Ferrara, S.; Grillo, A. F.; Gatto, R.: Ann. phys.. 76, 161 (1973)
[26] Petkou, A. C.: Ann. phys. (N.Y.). 249, 180 (1996)
[27] Davydychev, A. I.; Tausk, J. B.: Nucl. phys. B. 397, 133 (1993)
[28] Arutyunov, G.; Frolov, S.: Phys. rev. D. 62, 064016 (2000)