zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Cauchy numbers. (English) Zbl 1098.05008
Summary: We study many properties of Cauchy numbers in terms of generating functions and Riordan arrays and find several new identities relating these numbers with Stirling, Bernoulli and harmonic numbers. We also reconsider the Laplace summation formula showing some applications involving the Cauchy numbers.

MSC:
05A15Exact enumeration problems, generating functions
05A10Combinatorial functions
11B68Bernoulli and Euler numbers and polynomials
11B73Bell and Stirling numbers
WorldCat.org
Full Text: DOI
References:
[1] Boole, G.: An investigation of the law of thought. (1958) · Zbl 0084.07701
[2] Comtet, L.: Advanced combinatorics. (1974) · Zbl 0283.05001
[3] Greene, D. H.; Knuth, D. E.: Mathematics for the analysis of algorithms. (1982) · Zbl 1151.68750
[4] Henrici, P.: Applied and computational complex analysis, I. (1988) · Zbl 0635.30001
[5] Jagerman, D. L.: Difference equations with applications to queues. (2000) · Zbl 0963.39001
[6] D. Merlini, R. Sprugnoli, M.C. Verri, The method of coefficients, Amer. Math. Monthly, accepted for publication. · Zbl 1191.05006
[7] Milne-Thomson, L. M.: The calculus of finite differences. (1951) · Zbl 59.1111.01
[8] Shapiro, L. W.; Getu, S.; Woan, W. -J.; Woodson, L.: The Riordan group. Discrete appl. Math. 34, 229-239 (1991) · Zbl 0754.05010
[9] Sprugnoli, R.: Riordan arrays and combinatorial sums. Discrete math. 132, 267-290 (1994) · Zbl 0814.05003
[10] Wang, T.; Zhao, X.: Some identities related to reciprocal functions. Discrete math. 265, 323-335 (2003) · Zbl 1017.05022
[11] Wang, T.; Zhao, X.; Ding, S.: Some summation rules related to Riordan arrays. Discrete math. 281, 295-307 (2004) · Zbl 1042.05009
[12] Wilf, H. S.: Generating functionology. (1990)
[13] Yingying, L.: On Euler’s constant --- calculating sums by integrals. Amer. math. Monthly 109, 845-850 (2002) · Zbl 1027.40004
[14] Zave, D. A.: A series expansion involving the harmonic numbers. Inform. process. Lett. 5, 75-77 (1976) · Zbl 0359.65012