zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On some properties of solutions of the biharmonic equation. (English) Zbl 1098.31002
It is shown that the complex linear univalent operator $L(f) \equiv z f_{z} - \overline{z} f_{\overline{z}}$ preserves harmonicity and biharmonicity in the unit disc. It is proved that for a biharmonic mapping in the unit disc having the form $F = r^2 G$ with $G$ being harmonic and orientation preserving the Jacobian $J_F = \vert F_z\vert ^2 - \vert F_{\overline{z}}\vert ^2$ is positive for all $0 < r < 1$ and $J_F(0) = 0$. Starlikeness property of functions of the form $F = r^2 G$ with $G$ being harmonic and orientation preserving is characterized too.

31A30Biharmonic (etc.) functions and equations (two-dimensional), Poisson’s equation
31A05Harmonic, subharmonic, superharmonic functions (two-dimensional)
30C45Special classes of univalent and multivalent functions
Full Text: DOI
[1] Abu-Muhanna, Y.; Schober, G.: Harmonic mappings onto convex mapping domains. Can. J. Math 39, No. 6, 1489-1530 (1987) · Zbl 0644.30003
[2] Clunie, J.; Sheil-Small, T.: Harmonic univalent functions. Ann. acad. Sci. fenn. Series A. Math. 9, 3-25 (1984) · Zbl 0506.30007
[3] Choquet, G.: Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques. Bull. sci. Math. 69, No. 2, 51-60 (1945)
[4] Pommerenke, C.: Univalent functions. (1975) · Zbl 0298.30014
[5] Happel; Brenner, H.: Low Reynolds number hydrodynamics. (1965) · Zbl 0612.76032
[6] Khuri, S. A.: Biorthogonal series solution of Stokes flow problems in sectorial regions. SIAM J. Appl. math. 56, No. 1, 19-39 (1996) · Zbl 0844.76019
[7] Langlois, W. E.: Slow viscous flow. (1964)
[8] Abdulhadi, Z.; Abu-Muhanna, Y.; Khuri, S.: On the univalence of log-biharmonic mappings. J. math. Anal. appl. 289, 629-638 (2004) · Zbl 1036.30007
[9] Abdulhadi, Z.; Abu-Muhanna, Y.; Khuri, S.: On univalent solutions of the biharmonic equation. J. inequal. Appl. 2005, No. 5, 469-478 (2005) · Zbl 1100.30006