×

zbMATH — the first resource for mathematics

A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. (English) Zbl 1098.32506
Summary: We compute the prepotentials and the geometry of the moduli spaces for a Calabi-Yau manifold and its mirror. In this way we obtain all the sigma model corrections to the Yukawa couplings and moduli space metric for the original manifold. The moduli space is found to be subject to the action of a modular group which, among other operations, exchanges large and small values of the radius, though the action on the radius is not as simple as \(R \to 1/R\). It is also shown that the quantum corrections to the coupling decompose into a sum over instanton contributions and moreover that this sum converges. In particular there are no ‘sub-instanton’ corrections. This sum over instantons points to a deep connection between the modular group and the rational curves of the Calabi-Yau manifold. The burden of the present work is that a mirror pair of Calabi-Yau manifolds is an exactly soluble superconformal theory, at least as far as the massless sector is concerned. Mirror pairs are also more general than exactly soluble models that have hitherto been discussed since we solve the theory for all points of the moduli space.

MSC:
32G20 Period matrices, variation of Hodge structure; degenerations
14J30 \(3\)-folds
32G05 Deformations of complex structures
32G81 Applications of deformations of analytic structures to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
14J15 Moduli, classification: analytic theory; relations with modular forms
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Candelas, P.; Lynker, M.; Schimmrigk, R., Nucl. phys., B341, 383, (1990)
[2] B.R. Greene and M.R. Plesser, (2,2) and (2,0) superconformal orbifolds, Harvard University report HUTP-89/B241; Duality in Calabi-Yau moduli space, Harvard University report HUTP-89/A043
[3] Aspinwall, P.; Lütken, A.; Ross, G.G., Phys. lett., B241, 373, (1990)
[4] Strominger, A.; Witten, E., Commun. math. phys., 101, 341, (1985)
[5] Witten, E.; Martinec, E.; Dine, M.; Seiberg, N., Nucl. phys., Phys. lett., Phys. rev. lett., 57, 2625, (1986)
[6] Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E.; Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E., Nucl. phys., Nucl. phys., B289, 319, (1987)
[7] Distler, J.; Greene, B.R., Nucl. phys., B309, 295, (1988)
[8] L. Dixon and D. Gepner, unpublished
[9] Lerche, W.; Vafa, C.; Warner, N.P., Nucl. phys., B324, 427, (1989)
[10] Candelas, P., Nucl. phys., B298, 458, (1988)
[11] Giveon, A.; Rabinovici, E.; Veneziano, G.; Nair, V.P.; Shapere, A.; Strominger, A.; Wilczek, F.; Shapere, A.; Wilczek, F., Nucl. phys., Nucl. phys., Nucl. phys., B320, 669, (1989)
[12] Ferrara, S.; Lüst, D.; Shapere, A.; Theisen, S.; Ferrara, S.; Lüst, D.; Theisen, S.; Lerche, W.; Lüst, D.; Warner, N.P.; Ferrara, S.; Lüst, D.; Theisen, S., Phys. lett., Phys. lett., Phys. lett., Phys. lett., B242, 39, (1990)
[13] B. de Wit and A. Van Proeyen, Symmetries of dual-quaternionic manifolds, University of Utrecht report THU-90/18, CERN report CERN-TH.5865/90
[14] Grisaru, M.T.; van de Ven, A.; Zanon, D.; Grisaru, M.T.; van de Ven, A.; Zanon, D.; Grisaru, M.T.; van de Ven, A.; Zanon, D., Phys. lett., Nucl. phys., Nucl. phys., B277, 409, (1986)
[15] M. Lynker and R. Schimmrigk, Landau-Ginzburg theories as orbifolds, University of Texas report UTTG-22-90; Santa Barbara Institute for Theoretical Physics report NSF-ITP-90-88
[16] P. Candelas, P.S. Green, M. Lynker and R. Schimmrigk, Calabi-Yau manifolds in weighted \(P\)_4, University of Texas report, in preparation
[17] Candelas, P.; Green, P.; Hübsch, T., Nucl. phys., B330, 49, (1990)
[18] Candelas, P.; de la Ossa, X.C., Nucl. phys., B342, 246, (1990)
[19] Bryant, R.; Griffiths, P., (), 77
[20] P. Candelas and X.C. de la Ossa, Moduli space of Calabi-Yau manifolds, University of Texas report UTTG-07-90 · Zbl 0732.53056
[21] A. Strominger, Special geometry, University of California at Santa Barbara report, UCSBTH-89-61
[22] Erdélyi, A.; Oberhettinger, F.; Magnus, W.; Tricomi, F.G., Higher transcendental functions, (1953), McGraw-Hill New York · Zbl 0052.29502
[23] Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N., Singularities of differentiable maps, vol. II, () · Zbl 1297.32001
[24] Slater, L.J., Generalized hypergeometric functions, (1966), Cambridge Univ. Press Cambridge · Zbl 0135.28101
[25] Gepner, D., Phys. lett., B199, 380, (1987)
[26] Pope, C.N.; Sohnius, M.F.; Stelle, K.S.; Freeman, M.D.; Pope, C.N.; Candelas, P.; Freeman, M.D.; Pope, C.N.; Sohnius, M.F.; Stelle, K.S.; Freeman, M.D.; Pope, C.N.; Sohnius, M.F.; Stelle, K.S., Nucl. phys., Phys. lett., Phys. lett., Phys. lett., B178, 199, (1986)
[27] Aspinwall, P.; Lütken, A.; Aspinwall, P.; Lütken, A., Quantum algebraic geometry of superstring compactifications, Oxford university report, Oxford university report, (September 1990)
[28] Katz, S., Compositio math., 60, 151, (1986)
[29] Harris, J., Duke math. J., 46, 685, (1979)
[30] Clemens, H., Some results on Abel-Jacobi mappings in topics in transcendental algebraic geometry, (1984), Princeton Univ. Press Princeton
[31] Bender, C.M.; Orzag, S.A., Advanced mathematics for scientists and engineers, (1978), McGraw-Hill New York
[32] Candelas, P.; Horowitz, G.; Strominger, A.; Witten, E., Nucl. phys., B258, 46, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.