Huang, Yu; Zou, X. Co-existence of chaos and stable periodic orbits in a simple discrete neural network. (English) Zbl 1098.37069 J. Nonlinear Sci. 15, No. 5, 291-303 (2005). Summary: We show that a simple discrete network of two identical neurons can demonstrate chaotic behavior near the origin. This is complementary to the results due to J. Wu and R. Zhang [Discrete Contin. Dyn. Syst., Ser. B 4, 851-863 (2004; Zbl 1115.92003)], where it was shown that the same system can have a large capacity of stable periodic orbits in a region away from the origin. Cited in 3 ReviewsCited in 12 Documents MSC: 37N25 Dynamical systems in biology 37C27 Periodic orbits of vector fields and flows 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 39A11 Stability of difference equations (MSC2000) 82C32 Neural nets applied to problems in time-dependent statistical mechanics 92B20 Neural networks for/in biological studies, artificial life and related topics Keywords:neural network; discrete; delay; chaos; capacity; associate memory; periodic solutions Citations:Zbl 1115.92003 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{X. Zou}, J. Nonlinear Sci. 15, No. 5, 291--303 (2005; Zbl 1098.37069) Full Text: DOI