Iričanin, Bratislav; Stević, Stevo Some systems of nonlinear difference equations of higher order with periodic solutions. (English) Zbl 1098.39003 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 13, No. 3-4, 499-507 (2006). The paper deals with the two systems (1) \(x^{(m)}_{n+1} x^{(m+2)}_{n-1}=1+x_n^{(m+1)}=1 + x^{(m+1)}_n\) and (2) \(x^{(m)}_{n+1}x^{(m+3)}_{n-2}=1+x^{(m+1)}_n+x^{(m+2)}_{n-1}\). The solutions of both systems are assumed to be \(k\)-periodic in \(m\) with a fixed \(k\in\mathbb N\). It is shown that all solutions are \(p\)-periodic in \(n\) with \(p=5k\) when \(5\nmid k\) and \(p = k\) else in the case (1), whereas \(p = 8k\) when \(k = 2^jq\) \((0\leq j\leq 2\)), \(2 \nmid q\) and \(p = k\) else in the case (2). Reviewer: Lothar Berg (Rostock) Cited in 3 ReviewsCited in 48 Documents MSC: 39A11 Stability of difference equations (MSC2000) 39A20 Multiplicative and other generalized difference equations Keywords:rational nonlinear difference equations; periodic solutions; systems PDF BibTeX XML Cite \textit{B. Iričanin} and \textit{S. Stević}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 13, No. 3--4, 499--507 (2006; Zbl 1098.39003)