×

The minimal lamination closure theorem. (English) Zbl 1098.53007

Summary: We prove that the closure of a complete embedded minimal surface \(M\) in a Riemannian three-manifold \(N\) has the structure of a minimal lamination when \(M\) has positive injectivity radius. When \(N\) is \(\mathbb R^3\), we prove that such a surface \(M\) is properly embedded. Since a complete embedded minimal surface of finite topology in \(\mathbb R^3\) has positive injectivity radius, the previous theorem implies a recent theorem of Colding and Minicozzi …; a complete embedded minimal surface of finite topology in \(\mathbb R^3\) is proper. More generally, we prove that if \(M\) is a complete embedded minimal surface of finite topology and \(N\) has nonpositive sectional curvature (or is the Riemannian product of a Riemannian surface with \(\mathbb R\)), then the closure of \(M\) has the structure of a minimal lamination.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
49Q05 Minimal surfaces and optimization
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] T. H. Colding and W. P. Minicozzi II, The space of embedded minimal surfaces of fixed genus in a \(3\)-manifold, I: Estimates off the axis for disks , Ann. of Math. (2) 160 (2004), 27–68. JSTOR: · Zbl 1070.53031 · doi:10.4007/annals.2004.160.27
[2] -, The space of embedded minimal surfaces of fixed genus in a \(3\)-manifold, II : Multi-valued graphs in disks, Ann. of Math. (2) 160 (2004), 69–92. JSTOR: · Zbl 1070.53032 · doi:10.4007/annals.2004.160.69
[3] -, The space of embedded minimal surfaces of fixed genus in a \(3\)-manifold, III : Planar domains, Ann. of Math. (2) 160 (2004), 523–572. JSTOR: · Zbl 1076.53068 · doi:10.4007/annals.2004.160.523
[4] -, The space of embedded minimal surfaces of fixed genus in a \(3\)-manifold, IV : Locally simply connected, Ann. of Math. (2) 160 (2004), 573–615. JSTOR: · Zbl 1076.53069 · doi:10.4007/annals.2004.160.573
[5] -, The Calabi-Yau conjectures for embedded surfaces , · Zbl 1142.53012
[6] -, The space of embedded minimal surfaces of fixed genus in a \(3\)-manifold V; Fixed genus , · Zbl 1322.53059
[7] M. Do Carmo and C. K. Peng, Stable complete minimal surfaces in \(R^3\) are planes , Bull. Amer. Math. Soc. (N.S.) 1 (1979), 903–906. · Zbl 0442.53013 · doi:10.1090/S0273-0979-1979-14689-5
[8] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds , Invent. Math. 82 (1985), 121–132. · Zbl 0573.53038 · doi:10.1007/BF01394782
[9] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in \(3\)-manifolds of nonnegative scalar curvature , Comm. Pure Appl. Math. 33 (1980), 199–211. · Zbl 0439.53060 · doi:10.1002/cpa.3160330206
[10] D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces , Invent. Math. 101 (1990), 373–377. · Zbl 0722.53054 · doi:10.1007/BF01231506
[11] W. H. Meeks III, The regularity of the singular set in the Colding-Minicozzi lamination theorem , Duke Math. J. 123 (2004), 329–334. · Zbl 1086.53005 · doi:10.1215/S0012-7094-04-12324-3
[12] -, The lamination metric for a Colding-Minicozzi minimal lamination , Illinois J. Math. 49 (2005), 645–658. · Zbl 1087.53058
[13] W. H. Meeks III, J. PéRez, and A. Ros, The geometry of minimal surfaces of finite genus, II: Nonexistence of one limit end examples , Invent. Math. 158 (2004), 323–341. · Zbl 1070.53003 · doi:10.1007/s00222-004-0374-3
[14] -, Embedded minimal surfaces: Removable singularities, local pictures and parking garage structures, the dynamics of dilation invariant collections and the characterization of examples of quadratic curvature decay , preprint, 2006.
[15] -, The geometry of minimal surfaces of finite genus, III: Bounds on the topology and index of classical minimal surfaces , preprint, 2006.
[16] -, The geometry of minimal surfaces of finite genus, IV: Calabi-Yau conjectures , preprint, 2006.
[17] W. H. Meeks III and H. Rosenberg, The theory of minimal surfaces in \(M \times \re\) , Comment. Math. Helv. 80 (2005), 811–858. · Zbl 1085.53049 · doi:10.4171/CMH/36
[18] -, The uniqueness of the helicoid, Ann. of Math. (2) 161 (2005), 727–758. · Zbl 1102.53005 · doi:10.4007/annals.2005.161.727
[19] A. V. Pogorelov, On the stability of minimal surfaces , Soviet Math. Dokl. 24 (1981), 274–276. · Zbl 0495.53005
[20] R. Schoen, personal communication, July 2006.
[21] M. Traizet and M. Weber, Hermite polynomials and helicoidal minimal surfaces, Invent. Math. 161 (2005), 113–149. · Zbl 1075.53010 · doi:10.1007/s00222-004-0420-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.